PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Effect of temperature on the physical precursors of rock block failure

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The influence of temperature (25-400 °C) on the variations of mechanical, acoustic, electric and electromagnetic precursors of rock failure has been shown experimentally. The most significant variations were detected in the principal parameters of the acoustic and electromagnetic emissions whose impulse energy underwent a fast growth. However, the general character of hierarchical evolution stages of micro and macrofailure was practically unchanged. This has been confirmed by the so-called concentration parameter of rupture, which is theoretically calculated and checked in experiments; its space-time variations preceding the occurrence and progression of macrofailure are slightly depending on the rock temperature effect. This has been shown through the convolution of some physical precursors in a complex parameter whose variation showed an approaching of macrofailure, which remains slightly influenced by changes in temperature. Our results are interpreted in relation to physics of superficial earthquakes and precursors.
Czasopismo
Rocznik
Strony
1007--1029
Opis fizyczny
Bibliogr. 48 poz.
Twórcy
autor
autor
autor
autor
Bibliografia
  • Allègre, C.J., J.L. Le Mouël, H.D. Chau, and C. Narteau (1995), Scaling organization of fracture tectonics (SOFT) and earthquake mechanism, Phys. Earth Planet. Inter. 92, 3-4, 215-233, DOI: 10.1016/0031-9201(95)03033-0.
  • Baddari, K., and A.D. Frolov (1997), Modeling of fractal structure of geophysical field, CR Acad. Sci. II A 325, 925-930.
  • Baddari, K., and A.D. Frolov (2010), Regularities in discrete hierarchy seismoacoustic mode in a geophysical field, Ann. Geophys. 53, 5-6, 31-42, DOI: 10.4401/ag.4725.
  • Baddari, K., G.A. Sobolev, and A.D. Frolov (1996), Similarity in seismic precursors at different scales, CR Acad. Sci. II A 323, 755-763.
  • Baddari, K., G.A. Sobolev, A.D. Frolov, and A.V. Ponomarev (1999), An integrated study of physical precursors of failure in relation to earthquake prediction, using large scale rock blocks, Ann. Geophys. 42, 5, 771-787.
  • Baddari, K., A.D. Frolov, V. Tourtchine, and F. Rahmoune (2011), An integrated study of the dynamics of electromagnetic and acoustic regimes during failure of complex macrosystems using rock blocks, Rock Mech. Rock Eng. 44, 3, 269-280, DOI: 10.1007/s00603-010-0130-5.
  • Betekhtin, V.I., V.M. Roitman, A.I. Slutsker, and A.G. Kadomtsev (1998), Kinetics of the failure of loaded materials at variable temperature, Tech. Phys. 43, 11, 1342-1346, DOI: 10.1134/1.1259196.
  • Bizzarri, A., and M. Cocco (2006), A thermal pressurization model for spontaneous dynamic rupture propagation on a three-dimensional fault: 2. Traction evolution and dynamic parameters, J. Geophys. Res. 111, B05304.
  • Cai, M., and D. Liu (2009), Study of failure mechanism of rock under compressiveshear loading using real-time laser holography, Int. J. Rock Mech. Min. 46, 1, 59-68, DOI: 10.1016/j.ijrmms.2008.03.010.
  • Corrêa, C.C., and R.S.V. Nascimento (2005), Study of shale-fluid interactions Rusing thermogravimetry, J. Therm. Anal. Calorim. 79, 2, 295-298, DOI: 10.1007/ s10973-005-0052-8.
  • David, C., B. Menéndez, and M. Darot (1999), Influence of stress-induced and thermal cracking on physical properties and microstructure of Peyratte granite, Int. J. Rock Mech. Min. 36, 4, 433-448, DOI: 10.1016/S0148-9062(99)00010-8.
  • Fisher, G.J., and M.S. Paterson (1989), Dilatancy during rock deformation at high temperatures and pressures, J. Geophys. Res. 94, B12, 17607-17318, DOI: 10.1029/JB094iB12p17607.
  • Fortin, J., S. Stanchits, S. Vinciguerra, and Y. Guéguen (2011), Influence of thermal and mechanical cracks on permeability and elastic wave velocities in a basalt from Mt. Etna volcano subjected to elevated pressure, Tectopnophysics 503, 60-74, DOI: 10.1016/j.tecto.2010.09.028.
  • Heap, M.J., S. Vinciguerra, and P.G. Meredith (2009), The evolution of elastic moduli with increasing crack damage during cyclic stressing of basalt from Mt. Etna volcano, Tectonophysics 471, 1-2, 153-160, DOI: 10.1016/j.tecto.2008.10.004.
  • Heap, M.J., P. Baud, P.G. Meredith, S. Vinciguerra, A.F. Bell, and I.G. Main (2011), Brittle creep in basalt and its application to time-dependent Volcano deformation, Earth Planet. Sci. Lett. 307, 1-2, 71-82, DOI: 10.1016/j.epsl.2011.04.035.
  • Heuze, F.E. (1983), High-temperature mechanical, physical and thermal properties of granitic rocks—a review, Int. J. Rock Mech. Min. 20, 1, 3-10, DOI: 10.1016/0148-9062(83)91609-1.
  • Jaya, M.S., S.A. Shapiro, L.H. Kristinsdóttir, D. Bruhn, H. Milsch, and E. Spangenberg (2010), Temperature dependence of seismic properties in geothermal rocks at reservoir conditions, Geothermics 39, 1, 115-123, DOI: 10.1016/j.geothermics.2009.12.002.
  • Kuksenko, V.S., K.F. Makhmudov, V.A. Mansurov, U. Sultonov, and M.Z. Rustamova (2009), Changes in structure of natural heterogeneous materials under deformation, J. Min. Sci. 45, 4, 355-358, DOI: 10.1007/s10913-009-0044-3.
  • Kumar, A. (1968), The effect of stress rate and temperature on the strength of basalt and granite, Geophysics 33, 3, 501-510, DOI: 10.1190/1.1439947.
  • Lei, X., K. Masuda, O. Nishizawa, L. Jouniaux, L. Liu, W. Ma, T. Satoh, and K. Kusunose (2004), Detailed analysis of acoustic emission activity Turing catastrophic fracture of faults in rocks, J. Struct. Geol. 26, 2, 247-258, DOI: 10.1016/S0191-8141(03)00095-6.
  • Li, T.Z, Y.L. Tan, and G.Q. Cheng (2007), The coupling analysis of temperature field and stress field in rock surrounding deep roadways. In: Ch. Wang, W. Guo, J. Cheng, and D.H.S. Zou (eds.), Mine Hazards Prevention and Control Technology, Proc. 2007 International Conference on Mine Hazards Prevention and Control, Oingadao, China, 17-19 October 2007, Science Press, 287-291.
  • Lockner, D.A., and S.A. Stanchits (2002), Undrained poroelastic response of sandstones to deviatoric stress change, J. Geophys. Res. 107, B12, 2553, DOI: 10.1029/2001JB001460.
  • Lockner, D.A., J.D. Byerlee, V.S. Kuksenko, A. Ponomarev, and A. Sidorin (1991), Quasi-static fault growth and shear fracture energy in granite, Nature 350, 6313, 39-42, DOI: 10.1038/350039a0.
  • Moura, A., X.-L. Lei, and O. Nishisawa (2005), Prediction scheme for the catastrophic failure of highly loaded brittle materials or rocks, J. Mech. Phys. Solids 53, 11, 2435-2455, DOI: 10.1016/j.jmps.2005.06.004.
  • Nara, Y., N. Hiroyoshi, T. Yoneda, and K. Kaneko (2010), Effect of relative humidity and temperature on subcritical crack growth in igneous rock, Int. J. Rock Mech. Min. 47, 4, 640-646, DOI: 10.1016/j.ijrmms.2010.04.009.
  • Paterson, M.S., and T. Wong (2005), Experimental Rock Deformation – the Brittle Field, 2nd ed., Springer, Berlin. Rafiee, S., D. Gross, and T. Seelig (2004), The influence of micro-crack nucleation on dynamic crack growth—a numerical study, Eng. Fract. Mech. 71, 4, 849-857, DOI: 10.1016/S0013-7944(03)00042-0.
  • Rafiee, S., D. Gross, and T. Seelig (2004), The influence of micro-crack nucleation on dynamic crack growth—a numerical study, Eng. Fract. Mech. 71, 4, 849-857, DOI: 10.1016/S0013-7944(03)00042-0.
  • Smirnov, V.B., and A.V. Ponomarev (2004), Regularities in relaxation of the seismic regime according to natural and laboratory data, Phys. Earth 10, 26-36.
  • Smirnov, V.B., A.V. Ponomarev, and A.D. Zavyalov (1995), Acoustic structure in rock samples and the seismic process, Izv. Phys. Solid Earth 31, 1, 38-58.
  • Smirnov, V.B., A.V. Ponomarev, and S.M. Sergueeva (2001), On the similarity and feedback in experiments on rock fracture, Izv. Phys. Solid Earth 37, 1, 82-88.
  • Smirnov, V.B., A.V. Ponomarev, P. Bernard, and A.V. Patonin (2010), Regularities in transient modes in the seismic process according to the laboratory and natural modelling, Izv. Phys. Solid Earth 46, 2, 104-135, DOI: 10.1134/S1069351310020023.
  • Sobolev, G.A. (1993), Fundamentals of Earthquake Prediction, Nauka, Moscow (in Russian).
  • Sobolev, G.A. (2011), Seismicity dynamics and earthquake predictability, Nat. Hazards Earth Syst. Sci. 11, 445-458, DOI: 10.5194/nhess-11-445-2011.
  • Sobolev, G.A., and A.V. Ponomarev (1999), Laboratory study of acoustic emission and a refracture stage, Vulkanol. Seismol. 4-5, 50-62.
  • Stakhovsky, I.R. (2007), Self-similar seismogenic structure of the crust: A review of the problem and mathematical model, Izv. Phys. Solid Earth 43, 12, 1012-1023, DOI: 10.1134/S106935130712004X.
  • Thompson, B.D., R.P. Young, and D.A. Lockner (2006), Fracture in Westerly granite under AE feedback and constant strain rate loading: Nucleation, quasistatic propagation, and the transition to unstable fracture propagation, Pure Appl. Geophys. 163, 5-6, 995-1019.
  • Vinciguerra, S., C. Trovato, P.G. Meredith, and P.M. Benson (2005), Relating seismic velocities, thermal cracking and permeability in Mt. Etna and Iceland basalts, Int. J. Rock Mech. Min. 42, 7-8, 900-910, DOI: 10.1016/j.ijrmms.2005.05.022.
  • Volarovich, M.P. (1965), The investigation of elastic and absorption properties of rock at high pressures and temperatures, Tectonophysics 2, 2-3, 211-217, DOI: 10.1016/0040-1951(65)90013-2.
  • Wan, Z.J., Y.S. Zhao, Y. Zhang, and C. Wang (2009), Research status quo and prospection of mechanical characteristics of rock under high temperature and high pressure, Procedia Earth Planet. Sci. 1, 1, 565-570, DOI:10.1016/j.proeps.2009.09.090.
  • Wong, T.-F. (1982), Effects of temperature and pressure on failure and post-failure behaviour of Westerly granite, Mech. Mat. 1, 1, 3-17, DOI: 10.1016/0167-6636(82)90020-5.
  • Xu, X.L., F. Gao, X.M. Shen, and H.P. Xie (2008), Mechanical characteristics and microcosmic mechanisms of granite under temperature loads, J. China Univ. Min. Technol. 18, 3, 413-417.
  • Yukalov, V.I., A. Moura, and H. Nechad (2004), Self-similar law of energy release before materials fracture, J. Mech. Phys. Solids 52, 2, 453-465, DOI: 10.1016/S1006-1266(08)60086-3.
  • Zang, A., F.C. Wagner, S. Stanchits, Ch. Janssen, and G. Dresen (2000), Fracture process zone in granite, J. Geophys. Res. 105, B10, 23651-23661, DOI: 10.1029/2000JB900239.
  • Zavyalov, A.D. (2005), From the kinetic theory of strength and fracture concentration criterion to the seismogenic fracture density and earthquake forecasting, Phys. Solid State 47, 6, 1034-1041, DOI: 10.1134/1.1946852.
  • Zavyalov, A.D., and G.A. Sobolev (1988), Analogy in precursors of dynamic events at different scales, Tectonophysics 152, 3-4, 277-282, DOI: 10.1016/0040-1951(88)90053-4.
  • Zhang, L.Y., X.B. Mao, and A.H. Lu ( 2009), Experimental study of the mechanical properties of rocks at high temperature, Sci. China E 52, 3, 641-646, DOI: 10.1007/s11431-009-0063-y.
  • Zhurkov, S.N. (1984), Kinetic concept of the strength of solids, Int. J. Fract. Mech. 26, 295-307.
  • Zuo, J.P., H.P. Xie, H.W. Zhou, and S.P. Peng (2007), Thermal-mechanical coupled effect on fracture mechanism and plastic characteristics of sandstone, Sci. China E 50, 6, 833-843.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL1-0023-0020
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.