PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A neurocomputing approach to predict monsoon rainfall in monthly scale using SST anomaly as a predictor

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A relationship between summer monsoon rainfall and sea surface temperature anomalies was investigated with the aim of predicting the monthly scale rainfall during the summer monsoon period over a section (80°–90°E, 14°–24°N) of eastern India that depends heavily upon the rainfall during the summer monsoon months for its agricultural practices. The association between area-averaged rainfall of June over the study zone and global sea surface temperature (SST) anomalies for the period 1982–2008 was examined and the variability of rainfall in monthly scale was calculated. With a view to significant variability in the rainfall in the monthly scale, it was decided to implement the artificial neural network (ANN) for forecasting the monthly scale rainfall using the SST anomalies as a predictor. Finally, the potential of ANN in this prediction has been assessed.
Czasopismo
Rocznik
Strony
260--279
Opis fizyczny
Bibliogr. 70 poz.
Twórcy
autor
Bibliografia
  • Acharya, N., S.C. Kar, U.C. Mohanty, M.A. Kulkarni, and S.K. Dash (2011), Performance of GCMs for seasonal prediction over India—a case study for 2009 monsoon, Theor. Appl. Climatol.
  • Asnani, G.C. (1993), Tropical Meteorology, vol. 1, Indian Institute of Tropical Meteorology, Pune, India.
  • Basistha, A., N.K. Goel, D.S. Arya, and S.K. Gangwar (2007), Spatial pattern of trends in Indian sub-divisional rainfallnih, Jalvigyan Sameeksha 22, 47-57.
  • Callan, R. (1999), The Essence of Neural Networks, Prentice Hall, Hertfordshire.
  • Chattopadhyay, S., and G. Bandyopadhyay (2007), Artificial neural network with backpropagation learning to predict mean monthly total ozone in Arosa, Switzerland, Int. J. Remote Sens. 28, 20, 4471-4482.
  • Chattopadhyay, S., and G. Chattopadhyay (2008), Comparative study among different neural net learning algorithms applied to rainfall time series, Meteorol. Appl. 15, 2, 273-280.
  • Chattopadhyay, S., R. Jain, and G. Chattopadhyay (2009), Estimating potential evapotranspiration from limited weather data over Gangetic West Bengal, India: A neurocomputing approach, Meteorol. Appl. 16, 403-411.
  • Cherchi, A., S. Gualdi, S. Behera, J.J. Luo, S. Masson, T. Yamagata, and A. Navarra (2007), The influence of tropical Indian Ocean SST on the Indian summer monsoon, J. Climate 20, 3083-3105.
  • Clark, C.O., J.E. Cole, and P.J. Webster (2000), Indian Ocean SST and Indian summer rainfall: Predictive relationships and their decadal variability, J. Climate 13, 2503-2519.
  • Dawson, C.W., and R.L. Wilby (2001), Hydrological modelling using artificial neural networks, Prog. Phys. Geog. 25, 1, 80-108.
  • Deb, S.K., H.C. Upadhyaya, O.P. Sharma, and A. Chakraborty (2006), Simulation of Indian summer monsoon: experiments with SSTs, Meteorol. Atmos. Phys. 94, 43-64.
  • Deo, M.C., and C.S. Naidu (1998), Real time wave forecasting using neural networks, Ocean Eng. 26, 191-203.
  • Druyan, L.M. (1982), Studies of the indian summer monsoon with a coarse-mesh general circulation model, Part 2, J. Climatol. 2, 4, 347-355.
  • Elsharkwy, A.M., and R.B.C. Gharbi (2000), Comparing classical and neural regression techniques in modeling crude oil viscosity, Adv. Eng. Softw. 32, 215-224.
  • Farrar, D.E., and R.R. Glauber (1967), Multicollinearity in regression analysis: The problem revisited, Rev. Econ. Statistics 49, 92-107.
  • Fekedulegn, B.D., J.J. Colbert, R.R. Hicks, Jr., and M. Schuckers (2002), Coping with Multicollinearity: An Example on Application of Principal Components Regression in Dendroecology, Department of Agriculture, Forest Service, Northeastern Research Station, Newton Square, PA, USA.
  • Gadgil, S. (2003), The Indian monsoon and its variability, Annu. Rev. Earth Planet. Sc. 31, 429-467.
  • Gadgil, S., M. Rajeevan, and R. Nanjundiah (2005), Monsoon prediction—why yet another failure?, Curr. Sci. India 88, 1389-1400.
  • Gardner, M.W., and S.R. Dorling (1998) Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences, Atmos. Environ. 32, 14-15, 2627-2636.
  • Gardner, M.W., and S.R. Dorling (1999), Neural network modelling and prediction of hourly NOx and NO2 concentrations in urban air in London, Atmos. Environ. 33, 5, 709-719.
  • Goh, A.T.C. (1995), Back-propagation neural networks for modeling complex systems, Artif. Intell. Eng. 9, 143-151.
  • Guhathakurta, P., M. Rajeevan, and V. Thapliyal (1999), Long range forecasting Indian summer monsoon rainfall by a hybrid principal component neural network model, Meteorol. Atmos. Phys. 71, 3-4, 255-266.
  • Haykin, S. (2009), Neural Networks and Learning Machines, 3rd ed., Prentice Hall, Englewood Cliffs.
  • Hornik, K. (1991), Approximation capabilities of multilayer feedforward networks. Neural Networks 4, 251-257.
  • Hsieh, W.W., and T. Tang (1998), Applying neural network models to prediction and data analysis in meteorology and oceanography, Bull. Amer. Meteor. Soc. 79, 1855-1869.
  • Kamarthi, S.V., and S. Pittner (1999), Accelerating neural network training Rusing weight extrapolation, Neural Networks 12, 1285-1299.
  • Kar, G., R. Singh, and H.N. Verma (2004), Alternative cropping strategies for assured and efficient crop production in upland rain fed rice areas of ekstern India based on rainfall analysis, Agr. Water Manage. 67, 47-62.
  • Kar, S.C., N. Acharya, U.C. Mohanty, and M.A. Kulkarni (2011), Skill of monthly rainfall forecasts over India using multi-model ensemble schemes, Int. J. Climatol.
  • Karunasinghe, D.S.K., and S.-Y. Liong (2006), Chaotic time series prediction with a global model: Artificial neural network, J. Hydrol. 323, 92-105.
  • Katz, R.W. (2002), Sir Gilbert Walker and a connection between El Nino and statistics, Stat. Sci. 17, 97-117.
  • Krishnamurthy, V., and B.N. Goswami (2000), Indian monsoon – ENSO relationship on interdecadal timescale, J. Climate 13, 579-595.
  • Krishnamurthy, V., and B.P. Kirtman (2009), Relation between Indian monsoon variability and SST, J. Climate 22, 17, 4437-4458.
  • Krishnamurti, T.N. (1971), Tropical east-west circulations during the northern summer, J. Atmos. Sci. 28, 8, 1342-1347.
  • Krishnamurti, T., and H. Bhalme (1976), Oscillations of a monsoon system. Part I: Observational aspects, J. Atmos. Sci. 33, 1937-1954.
  • Kumar, K.K., K.R. Kumar, R.G. Ashrit, N.R. Deshpande, and J.W. Hansen (2004), Climate impacts on Indian agriculture, Int. J. Climatol. 24, 11, 1375-1393.
  • Kumar, K.K., M. Hoerling, and B. Rajagopalan (2005), Advancing dynamical prediction of Indian monsoon rainfall, Geophys. Res. Lett. 32, L08704.
  • Lundin, M., J. Lundin, H.B. Burke, S. Toikkanen, L. Pylkkänen, and H. Joensuu (1999), Artificial neural networks applied to survival prediction in Brest cancer, Oncology 57, 281-286.
  • Maier, H.R., and G.C. Dandy (2000), Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications, Environ. Modell. Softw. 15, 101-124.
  • Mishra, S. (2006), Monsoon weather variation and its impact on agriculture, West Bengal 48, 9, 21-31.
  • Mohapatra, M., and U.C. Mohanty (2004), Some characteristics of low pressure systems and summer monsoon rainfall over Orissa, Curr. Sci. India 87, 9, 1245-1255.
  • Mohapatra, M., and U.C. Mohanty (2007), An objective approach for prediction of daily summer monsoon rainfall over Orissa (India) due to interaction of mesoscale and large-scale synoptic systems, Pure Appl. Geophys. 164, 1683-1698.
  • Nagendra, S.M., and M. Khare (2006), Artificial neural network approach for model ling nitrogen dioxide dispersion from vehicular exhaust emissions, Ecol. Model. 190, 99-115.
  • Navone, H.D., and H.A. Ceccatto (1994), Predicting Indian monsoon rainfall: a neural network approach, Clim. Dynam. 10, 6-7, 305-312.
  • Nayak, P.C., K.P. Sudheer, D.M. Rangan, and K.S. Ramasastri (2004), A neurofuzzy computing technique for modeling hydrological time series, J. Hydrol. 291, 52-66.
  • Neumann, D.E. (2002), An enhanced neural network technique for software risk analysis, IEEE Trans. Software Eng. 28, 9, 904-912.
  • Pattanaik, D.R., and A. Kumar (2010), Prediction of summer monsoon rainfall over India using the NCEP climate forecast system, Clim. Dynam. 34, 557-572.
  • Philip, N.S., and K.B. Joseph (2003), A neural network tool for analyzing trends in rainfall, Comput. Geosci. 29, 2, 215-223.
  • Prasad, K., S.K. Dash, and U.C. Mohanty (2009), A logistic regression approach for monthly rainfall forecasts in meteorological subdivisions of India based on DEMETER retrospective forecasts, Int. J. Climatol. 30, 10, 1577-1588.
  • Rajeevan, M., P. Guhathakurta, and V. Thapliyal (2000), New models for long range forecasts of summer monsoon rainfall over north west and peninsular India, Meteorol. Atmos. Phys. 73, 211-225.
  • Rajeevan, M., J. Bhate, J. Kale, and B. Lal (2006), High resolution daily gridded rainfall data for the Indian region: Analysis of break and active monsoon spells, Curr. Sci. India 91, 296-306.
  • Ramesh, K.J., and G.R. Iyengar (1999), Characteristics of medium range rainfall forecasts of the Asian summer monsoon, Int. J. Climatol. 19, 62-637.
  • Rao, K.G., and B.N. Goswami (1988), Interannual variations of SST over the Arabian Sea and the Indian monsoon: A new perspective, Monthly Weath. Rev. 116, 3, 558-568.
  • Reynolds, R.W., and T.M. Smith (1994), Improved global sea surface temperature analyses, J. Climate 7, 929-948.
  • Sahai, A.K., M.K. Soman, and V. Satyan (2000), All India summer monsoon rainfall prediction using artificial neural network, Clim. Dynam. 16, 291-302.
  • Sahai, A.K., A.M. Grimm, V. Satyan, and G.B. Pant (2003), Long-lead prediction of Indian summer monsoon rainfall from global SST evolution, Clim. Dynam. 20, 855-863.
  • Shukla, J. (1998), Predictability in the midst of chaos: A scientific basis for cli mate forecasting, Science 282, 728-731.
  • Sivakumar, B. (2000) Chaos theory in hydrology: important issues and interpretations, J. Hydrol. 227, 1-20.
  • Sudheer, K.P., A.K. Gosain, and K.S. Ramasastri (2002), A data-driven algorithm for constructing artificial neural network rainfall-runoff models, Hydrol. Process. 16, 1325-1330.
  • Tang, H., K.C. Tan, and Z. Yi (2007), Neural Networks: Computational Models and Applications, Springer, Berlin.
  • Tim, H., L. Marquez, M. O’Connor, and R. William (1994), Artificial neural network models for forecasting and decision making, Int. J. Forecasing 10, 5-15.
  • Tsujitani, M., and M. Aoki (2006), Neural regression model, resampling and diagnosis, Syst. Comput. Jpn. 37, 13-20.
  • Varotsos, C. (2005a), Power-law correlations in column ozone over Antarctica, Int. J. Remote Sens. 26, 3333-3342.
  • Varotsos, C. (2005b), Modern computational techniques for environmental data: Application to the global ozone layer. In: V.S. Sunderam, G.D. van Albada, P.M.A. Sloot and J. Dongarra (eds.), Computational Science – ICCS 2005, Proc. 5th International Conference, Atlanta, GA, USA, 22-25 May 2005, Part III, Lecture Notes in Computer Science 3516, Springer, Berlin, 504-510.
  • Varotsos, C., and D. Kirk-Davidoff (2006), Long-memory processes in ozone and temperature variations at the region 60°S-60°N, Atmos. Chem. Phys. 6, 12, 4093-4100.
  • Vecchi, G.A., and D.E. Harrison (2004), Interannual Indian rainfall variability and Indian Ocean sea surface temperature anomalies. In: C. Wang, S.-P. Xie and J.A. Carton (eds.), Earth Climate: The Ocean-Atmosphere Interaction, Geophysical Monograph 147, American Geophysical Union, Washington D.C., 247-260.
  • Venkatesan, C., S.D. Raskar, S.S. Tambe, B.D. Kulkarni, and R.N. Keshavamurty (1997), Prediction of all India summer monsoon rainfall using error-backpropagation neural networks, Meteorol. Atmos. Phys. 62, 225-240.
  • Wang, B., Q. Ding, X. Fu, I.S. Kang, K. Jin, J. Shukla, and F. Doblas-Reyes (2005), fundamental challenge in simulation and prediction of summer monsoon rainfall, Geophys. Res. Lett. 32, L15711.
  • Washington, W.M., R.M. Chervin, and G.V. Rao (1977), Effects of a variety of Indian Ocean surface temperature anomaly patterns on the summer monsoon circulation: Experiments with the NCAR general circulation model. Pure Appl. Geophys. 115, 1335-1356.
  • Webster, P.J., V.O. Magana, T.N. Palmer, J. Shukla, R.A. Tomas, M. Yanai, and T. Yasunari (1998), Monsoons: processes, predictability, and the prospects for prediction, J. Geophys. Res. 103, C7, 14451-14510.
  • Zeng, X., R.A. Pielke, and R. Eykholt (1993), Chaos theory and its applications to the atmosphere, Bull. Amer. Meteor. Soc. 74, 631-644.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL1-0018-0029
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.