Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We considered the two-dimensional stress aspect of a fault from the viewpoint of differential geometry. For this analysis, we concentrated on the curvatures of the Airy stress function surface. We found the following: (i) Because the principal stresses are the principal curvatures of the stress function surface, the first and the second invariant quantities in the elasticity correspond to invariant quantities in differential geometry; specifically, the mean and Gaussian curvatures, respectively; (ii) Coulomb's failure criterion shows that the coefficient of friction is the physical expression of the geometric energy of the stress function surface; (iii) The differential geometric expression of the Goursat formula shows that the fault (dislocation) type (strike-slip or dip-slip) corresponds to the stress function surface type (elliptic or hyperbolic). Finally, we discuss the need to use non-biharmonic stress tensor theory to describe the stress aspect of multi-faults or an earthquake source zone.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
4--23
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
autor
autor
- Department of Earth and Planetary Sciences, Faculty of Science, Kobe University, Nada, Kobe, Japan, yk2000@kobe-u.ac.jp
Bibliografia
- Mandl, G. (1988), Mechanics of Tectonic Faulting: Models and Basic Concepts, Elsevier, Amsterdam.
- Mogi, K. (1967), Effect of the intermediate principal stress on rock failure, J. Geophys. Res. 72, 20, 5117-5131.
- Nagahama, H., and R. Teisseyre (2008), Continuum theory of defects: Advanced approaches. In: R. Teisseyre, H. Nagahama, and E. Majewski (eds.), Physics of Assymetric Continuum: Extreme and Fracture Processes, Springer-Verlag, Berlin, 220-248.
- Park, R.G. (1997), Foundation of Structural Geology, Chapman and Hall, New York.
- Parry, R.H.G. (2004), Mohr Circles, Stress Paths and Geotechnics, Taylor andFrancis, London.
- Pottmann, H., P. Grohs, and N.J. Mitra (2009), Laguerre minimal surfaces, isotropic geometry and linear elasticity, Adv. Comput. Math. 31, 4, 391-419.
- Teisseyre, R. (1973), Earthquake processes in a micromorphic continuum, Pure Appl. Geophys. 102, 1, 15-28.
- Teisseyre, R. (2009), Tutorial on new developments in the physics of rotational motions, Bull. Seismol. Soc. Am. 99, 2B, 1028-1039.
- Teisseyre, R. (2010), Fluid theory with asymmetric molecular stresses: Difference between vorticity and spin equations, Acta Geophys. 58, 6, 1056-1071.
- Teisseyre, R., and M. Górski (2009), Transport in fracture processes: Fragmentation and slip, Acta Geophys. 57, 3, 583-599.
- Teisseyre, R., and M. Górski (2011), Earthquake fragmentation and slip processes: spin and shear-twist wave mosaic, Acta Geophys. 59, 3, 453-469.
- Teisseyre, R., and M. Shimbo (1995), Differential geometry methods in deformation problems. In: R. Teisseyre (ed.), Theory of Earthquake Premonitory and Fracture Processes, Polish Scientific Publisher PWN, 503-544.
- Twiss, R.J., and E.M. Moores (1992), Structural Geology, W.H. Freeman, New York.
- Willmore, T.J. (1996), Riemannian Geometry, Oxford University Press, New York.
- Yamasaki, K. (2005), Tensor analysis of dislocation-stress relationship based on the extended deformation gradient, Acta Geophys. Pol. 53, 1, 1-12.
- Yamasaki, K. (2009), A quantum particle motion and thermodynamics in faultsdefects field: Path integral formulation based on extended deformation gradient tensor, Acta Geophys. 57, 3, 567-582.
- Yamasaki, K., and H. Nagahama (1999), Hodge duality and continuum theory of defects, J. Phys. A Math. Gen. 32, 44, L475-L481.
- Yamasaki, K., and H. Nagahama (2002), A deformed medium including a defekt field and differential forms, J. Phys. A Math. Gen. 35, 16, 3767-3778.
- Yamasaki, K., and H. Nagahama (2008), Energy integral in fracture mechanics (J-integral) and Gauss-Bonnet theorem, J. Appl. Math. Mech. 88, 6, 515-520.
- Yamasaki, K., T. Yajima, and T. Iwayama (2011), Differential geometric structures of stream functions: incompressible two-dimensional flow and curvatures, J. Phys. A Math. Theor. 44, 15, 155501-155521.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL1-0018-0017