PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Testing the anelastic nonhydrostatic model EULAG as a prospective dynamical core of a numerical weather prediction model Part I: Dry benchmarks

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, a feasibility of anelastic approach for numerical weather prediction (NWP) is examined. The study concerns the anelastic nonhydrostatic model EULAG as a prospective candidate for the new dynamical core of a high-resolution NWP model. Such an application requires a series of benchmark tests to be performed. The study presents the results of dry idealized two-dimensional linear and non-linear tests. They include evolution of cold and warm density currents in neutrally stratified atmosphere, inertia-gravity waves in short and long channels, as well as mountain gravity waves for a set of different flow regimes. Detailed comparison of the results with the reference solutions, based mainly on the results of compressible models, indicates a high level of conformity for all of the experiments. It verifies the anelastic approach as strongly consistent with the compressible one for a broad class of atmospheric problems. It also corroborates the robustness of EULAG numerics, an essential requirement of dynamical core of NWP model.
Czasopismo
Rocznik
Strony
1236--1266
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
autor
Bibliografia
  • Bonaventura, L. (2000), A semi-implicit semi-Lagrangian scheme using the height coordinate for a nonhydrostatic and fully elastic model of atmospheric flows, J. Comput. Phys. 158, 2, 186-213.
  • Cullen, M., D. Salmond, and P. Smolarkiewicz (2000), Key numerical issues for the future development of the ECMWF model. In: Proc. Workshop on “Developments in Numerical Methods for Very High Resolution Global Models”, Reading, UK, European Centre for Medium-Range Weather Forecasts, 183206.
  • Durran, D.R. (1989), Improving the anelastic approximation, J. Atmos. Sci. 46, 11, 1453-1461.
  • Giraldo, F.X., and M. Restelli (2008), A study of spectral element and discontinuous Galerkin methods for the Navier–Stokes equations in nonhydrostatic mesoscale atmospheric modeling: Equation sets and test cases, J. Comput. Phys. 227, 8, 3849-3877.
  • Grabowski, W.W., and P.K. Smolarkiewicz (2002), A multiscale anelastic model for meteorological research, Month. Weather Rev. 130, 4, 939-956.
  • Jung, J.-H., and A. Arakawa (2008), A three-dimensional anelastic model based on the vorticity equation, Month. Weather Rev. 136, 1, 276-294.
  • Klemp, J.B., and D.K. Lilly (1978), Numerical simulation of hydrostatic mountains waves, J. Atmos. Sci. 35, 78-107.
  • Klemp, J.B., W.C. Skamarock, and J. Dudhia (2007), Conservative split-explicit time integration methods for the compressible nonhydrostatic equations, Month. Weather Rev. 135, 8, 2897-2913.
  • Kurowski, M.J., B. Rosa, and M. Ziemianski (2011), Testing the anelastic nonhydrostatic model EULAG as a prospective dynamical core of numerical Feather prediction model. Part II: Simulations of a supercell, Acta Geophys. 59, 6.
  • Mahalov, A., and M. Moustaoui (2009), Vertically nested nonhydrostatic model for multiscale resolution of flows in the upper troposphere and lower stratosphere, J. Comput. Phys. 228, 4, 1294-1311.
  • Ogura, Y., and N.A. Phillips (1962), Scale analysis of deep and shallow convection in the atmosphere, J. Atmos. Sci. 19, 2, 173-179.
  • Pinty, J.P., R. Benoit, E. Richard, and R. Laprise (1995), Simple tests of a semiimplicit semi-Lagrangian model on 2D mountain wave problems, Month. Weather Rev. 123, 10, 3042-3058.
  • Prusa, J.M., P.K. Smolarkiewicz, and A.A. Wyszogrodzki (2008), EULAG, a computational model for multiscale flows, Comput. Fluids 37, 9, 1193-1207.
  • Robert, A. (1993), Bubble convection experiments with a semi-implicit formulation of the Euler equations, J. Atmos. Sci. 50, 13, 1865-1873.
  • Skamarock, W.C. (2004), Evaluating mesoscale NWP models using kinetic energy spectra, Month. Weather Rev. 132, 12, 3019-3032.
  • Skamarock, W.C., and J.B. Klemp (1994), Eficiency and accuracy of the Klemp–Wilhelmson time-splitting technique, Month. Weather Rev. 122, 11, 2623-2630.
  • Skamarock, W.C., and J.B. Klemp (2008), A time-split nonhydrostatic atmospheric model for weather research and forecasting applications, J. Comput. Phys. 227, 7, 3465-3485.
  • Skamarock, W.C., J.D. Doyle, P. Clark, and N. Wood (2004), A standard test set for nonhydrostatic dynamical cores of NWP models. In: 16th Conference on Numerical Weather Prediction, Seattle WA, USA, P2.17.
  • Smolarkiewicz, P.K. (2006), Multidimensional positive definite advection transport algorithm: an overview, Int. J. Numer. Meth. Fluids 50, 10, 1123-1144.
  • Smolarkiewicz, P.K., and A. Dörnbrack (2008), Conservative integrals of adiabatic Durran’s equations, Int. J. Numer. Meth. Fluids 56, 8, 1513-1519.
  • Smolarkiewicz, P.K., and L.G. Margolin (1998), MPDATA: A finite-difference solver for geophysical flows, J. Comput. Phys. 140, 2, 459-480.
  • Smolarkiewicz, P.K., and J. Szmelter (2011), A nonhydrostatic unstructured-mesh soundproof model for simulation of internal gravity waves, Acta Geophys. 59, 6.
  • Straka, J.M., R.B. Wilhelmson, L.J. Wicker, J.R. Anderson, and K.K. Droegemeier (1993), Numerical solutions of a non-linear density-current: A benchmark solution and comparisons, Int. J. Numer. Meth. Fluids 17, 1, 1-22.
  • Xue, M., and A.J. Thorpe (1991), A mesoscale numerical model using the nonhydrostatic pressure-based sigma-coordinate equations: model experiments with dry mountain flows, Month. Weather Rev. 119, 5, 1168-1185.
  • Zalesak, S.T. (1979), Fully multidimensional flux-corrected transport algorithms for fluids, J. Comput. Phys. 31, 3, 335-362.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL1-0017-0008
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.