PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Toward very high horizontal resolution NWP over the alps: Influence of increasing model resolution on the flow pattern

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The increasing resolution of contemporary regional numerical weather prediction (NWP) models, reaching horizontal grid sizes of O(1 km), requires robust and reliable dynamical cores, working well beyond the approximation of quasi-horizontal flows. That stimulates an interest in an application for NWP purposes of dynamical cores based on the anelastic, or - more generally - sound-proof flow equations, and characterized by appropriate robustness and reliability. The paper presents results from testing the dynamical core of EULAG, the anelastic research model for multi-scale flows, as a prospective NWP dynamical core. The model simulates the semi-realistic frictionless and adiabatic flow over realistic steep Alpine topographies, employing horizontal grid sizes of 2.2, 1.1, and 0.55 km. The paper demonstrates not only the numerical robustness of EULAG, but also studies the influence of the varying horizontal resolution on the simulated flow. Results show that the increased horizontal resolution increases orographic drag on the flow. While the general flow pattern remains the same, increased resolution influences the flow on scales from hundreds of kilometers to meso-gamma scales. The differences are especially apparent in the near-surface layer of 1.5 to 3 km deep, and in the distribution and amplitudes of the orographically-induced gravity waves.
Czasopismo
Rocznik
Strony
1205--1235
Opis fizyczny
Bibliogr. 44 poz.
Twórcy
autor
autor
Bibliografia
  • Achatz, U., R. Klein, and F. Senf (2010), Gravity waves, scale assumptotics and the pseudo-incompressible equations, J. Fluid Mech. 663, 120-147.
  • Arakawa, A., and C.S. Konor (2009), Unification of the anelastic and quasi-hydrostatic systems of equations, Month. Weather Rev. 137, 2, 710-726.
  • Brighton, P.W.M. (1978), Strongly stratified flow past three-dimensional obstacles, Quart. J. Roy. Met. 104, 440, 289-307.
  • Bryan, G.H., and J.M. Fritsch (2002), A benchmark simulation for moist nonhydrostatic numerical models, Month. Weather Rev. 1030, 12, 2917-2928.
  • Clark, T.L., and M.J. Miller (1991), Pressure drag and momentum fluxes due to the Alps. II: Representation in large-scale atmospheric models, Quart. J. Roy. Met. 117, 499, 527-552.
  • Cullen, M., D. Salmond, and P.K. Smolarkiewicz (2000), Key numerical issues for the future development of the ECMWF model. In: Proc. ECMWF Workshop on Developments in Numerical Methods for Very High Resolution Global Models, Reading, ECMWF, 183-206.
  • Davies, T., A. Staniforth, N. Wood, and J. Thuburn (2003), Validity of anelastic and other equation sets as inferred from normal-mode analysis, Quart. J. Roy. Met. 129, 2761-2775.
  • Gal-Chen, T., and R.C.J. Somerville (1975), On the use of a coordinate transformation for the solution of the Navier-Stokes equations, J. Comput. Phys. 17, 2, 209-228.
  • Ghizaru, M., P. Charbonneau, and P.K. Smolarkiewicz (2010), Magnetic cycles in global large-eddy simulations of solar convection, Astrophys. J. Lett. 715, 2, L133-L137.
  • Grabowski, W.W., and P.K. Smolarkiewicz (2002), A multiscale anelastic model for meteorological research, Month. Weather Rev. 130, 4, 939-956.
  • Hoinka, K.P., and T.L. Clark (1991), Pressure drag and momentum fluxes due to the Alps. I: Comparison between numerical simulations and observations, Quart. J. Roy. Met. 117, 499, 495-525.
  • Janjic, Z.I., J.P. Gerrity Jr., and S. Nickovic (2001), An alternative approach to nonhydrostatic modeling, Month. Weather Rev. 129, 5, 1164-1178.
  • Jiang, Q., J.D. Doyle, and R.B. Smith (2005), Blocking, descent and gravity waves: Observations and modelling of a MAP northerly fôhn event, Quart. J. Roy. Met. 131, 606, 675-701.
  • Jiang, Q., J.D. Doyle, and R.B. Smith (2006), Interaction between trapped waves and boundary layers, J. Atmos. Sci. 63, 2, 617-633.
  • Jiang, Q., R.B. Smith, and J.D. Doyle (2008), Impact of the atmospheric Bondary layer on mountain waves, J. Atmos. Sci. 65, 2, 592-608.
  • Klein, R. (2009), Asymptotics, structure, and integration of sound-proof atmospheric flow equations, Theor. Comput. Fluid Dyn. 23, 3, 161-195.
  • Klein, R., U. Achatz, D. Bresch, O.M. Knio, and P.K. Smolarkiewicz (2010), Regime of validity of soundproof atmospheric flow models, J. Atmos. Sci. 67, 10, 3226-3237.
  • Klemp, J.B., and R.B. Wilhelmson (1978), The simulation of three-dimensional convective stormdynamics, J. Atmos. Sci. 35, 6, 1070-1096.
  • Kurowski, M.J., B. Rosa, and M.Z. Ziemianski (2011), Testing the anelastic nonhydrostatic model EULAG as a prospective dynamical core of a numerical Feather prediction model. Part II: Simulations of a supercell, Acta Geophys. 59, 6.
  • Leuenberger, D., M. Koller, O. Fuhrer, and C. Schär (2010), A generalization of the SLEVE vertical coordinate, Month. Weather Rev. 138, 9, 3683-3689.
  • Lipps, F.B., and R.S. Hemler (1982), A scale analysis of deep moist convection and some related numerical calculations, J. Atmos. Sci. 39, 10, 2192-2210.
  • Lott, F., and M.J. Miller (1997), A new subgrid-scale orographic drag parameterization: its formulation and testing, Quart. J. Roy. Met. 123, 537, 101-127.
  • Nappo, C.J., and G. Chimonas (1992), Wave exchange between the ground surface and a boundary-layer critical level, J. Atmos. Sci. 49, 13, 1075-1091.
  • Pierrehumbert, R.T., and B. Wyman (1985), Upstream effects of mesoscale mountains, J. Atmos. Sci. 42, 10, 977-1003.
  • Prusa, J.M., and W.J. Gutowski (2011), Multi-scale waves in sound-proof global simulations with EULAG, Acta Geophys. 59, 6.
  • Prusa, J.M., P.K. Smolarkiewicz, and A.A. Wyszogrodzki (2008), EULAG, a computational model for multiscale flows, Comput. Fluids 37, 9, 1193-1207.
  • Rabus, B., M. Eineder, A. Roth, and R. Bamler (2003), The shuttle radar topography mission – A new class of digital elevation models acquired by spaceborne radar, ISPRS J. Photogramm. Remote Sens. 57, 4, 241-262.
  • Rontu, L. (2006), A study on parametrization of orography-related momentum fluxes in a synoptic-scale NWP model, Tellus A 58, 1, 69-81.
  • Rosa, B., M.J. Kurowski, and M.Z. Ziemianski (2011), Testing the anelastic nonhydrostatic model EULAG as a prospective dynamical core of a numerical weather prediction model. Part II: Dry benchmarks, Acta Geophys. 59, 6.
  • Rotach, M.W. (1993a), Turbulence close to a rough urban surface. Part I: Reynolds stress, Bound.-Layer Meteor. 65, 1-2, 1-28.
  • Rotach, M.W. (1993b), Turbulence close to a rough urban surface. Part II: Variances and gradients, Bound.-Layer Meteor. 66, 1-2, 75-92.
  • Rotach, M.W., M. Andretta, P. Calanca, A.P. Weigl, and A. Weiss (2008), Boundary layer characteristics and turbulent exchange mechanisms in highly complex terrain, Acta Geophys. 56, 1, 194-219.
  • Rotunno, R., and J. Klemp (1985), On the rotation and propagation of simulated supercell thunderstorms, J. Atmos. Sci. 42, 3, 271-292.
  • Salvador, R., J. Calbò, and M.M. Millàn (1999), Horizontal grid size selection and its influence on mesoscale model simulations, J. Appl. Meteor. 38, 9, 1311-1329.
  • Smith, J.W., and P.R. Bannon (2008), A comparison of compressible and anelastic models of deep dry convection, Month. Weather Rev. 136, 12, 4555-4571.
  • Smith, S.A., J.D. Doyle, A.R. Brown, and S. Webster (2006), Sensitivity of resolved mountain drag to model resolution for MAP case-studies, Quart. J. Roy. Met. 132, 618, 1467-1487.
  • Smith, R.B., S. Skubis, J.D. Doyle, A.S. Broad, C. Kiemle, and H. Volkert (2002), Mountain waves over Mont Blanc: Influence of a stagnant Bondary layer, J. Atmos. Sci. 59, 13, 2073-2092.
  • Smolarkiewicz, P.K. (2006), Multidimensional positive definite advection transport algorithm: an overview, Int. J. Numer. Meth. Fluids 50, 10, 1123-1144.
  • Smolarkiewicz, P.K., and R. Rotunno (1990), Low Froude number flow past threedimensional obstacles. Part II: Upwind flow reversal zone, J. Atmos. Sci. 47, 12, 1498-1511.
  • Smolarkiewicz, P.K., R. Sharman, J. Weil, S.G. Perry, D. Heist, and G. Bowker (2007), Building resolving large-eddy simulations and comparison with wind tunnel experiments, J. Comput. Phys. 227, 1, 633-653.
  • Warn-Varnas, A., J. Hawkins, P.K. Smolarkiewicz, S.A. Chin-Bing, D. King, and Z. Hallock (2007), Solitary wave effects north of Strait of Messina, Ocean Model. 18, 2, 97-121.
  • Weisman, M.L., and J.B. Klemp (1982), The dependence of numerically simulated convective storms on vertical wind shear and buoyancy, Month. Weather Rev. 110, 6, 504-520.
  • Welch, W.T., P.K. Smolarkiewicz, R. Rotunno, and B.A. Boville (2001), The largescale effects of flow over periodic mesoscale topography, J. Atmos. Sci. 58, 12, 1477-1492.
  • Wood, N., and P. Mason (1993), The pressure force induced by neutral, turbulent flow over hills, Quart. J. Roy. Met. 119, 514, 1233-1267.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL1-0017-0007
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.