PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Activation of cloud droplets in bin-microphysics simulation of shallow convection

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper describes implementation of the warm-rain bin microphysics in a LES model based on the EULAG fluid flow solver. The binmicrophysics EULAG is applied to the case of shallow nonprecipitating tropical convection to investigate the impact of the secondary activation of cloud droplets above the cloud base. In a previous study applying the EULAG model with the double-moment bulk warm-rain microphysics scheme, the in-cloud activation was shown to have significant implications for the mean microphysical and optical characteristics of the cloud field. By contrasting the simulations with and without in-cloud activation as in the previous study, we show that the in-cloud activation has qualitatively similar but quantitatively smaller effect. In particular, the concentration of cloud droplets in the bin simulation without in-cloud activation decreases with height not as strongly as in corresponding simulations applying the double-moment bulk scheme.
Czasopismo
Rocznik
Strony
1168--1183
Opis fizyczny
Bibliogr. 37 poz.
Twórcy
autor
autor
Bibliografia
  • Albrecht, B.A. (1989), Aerosols, cloud microphysics, and fractional cloudiness, Science 245, 4923, 1227-1230.
  • Arabas, S., H. Pawlowska, and W.W. Grabowski (2009), Effective radius and droplet spectral width from in-situ aircraft observations in trade-wind cumuli Turing RICO, Geophys. Res. Lett. 36, L11803.
  • Beard, K.V. (1976), Terminal velocity and shape of cloud and precipitation drops aloft, J. Atmos. Sci., 33, 5, 851-864.
  • Bony, S., and J.L. Dufresne (2005), Marine boundary layer clouds at the heart of tropi cal cloud feedback uncertainties in climate models, Geophys. Res. Lett. 32, L20806.
  • Brenguier, J.-L., and W.W. Grabowski (1993), Cumulus entrainment and Cloud droplet spectra: A numerical model within a two-dimensional dynami cal framework, J. Atmos. Sci. 50, 120-136.
  • Emanuel, K.A. (1994), Atmospheric Convection, Oxford University Press, New York, 580 pp.
  • Gerber, H. (2006), Entrainment, mixing, and microphysics in RICO cumulus. In: Proc. 12th Conf. on Cloud Physics, 9-14 July 2006, Madison, WI, USA, Amer. Meteorol. Soc., P2.22.
  • Gerber, H., G.M. Frick, J.B. Jensen, and J.G. Hudson (2008), Entrainment, mixing, and microphysics in trade-wind cumulus, J. Meteorol. Soc. Jpn. 86A, 87-106.
  • Grabowski, W.W. (1989), Numerical experiments on the dynamics of the cloudenvironment interface: small cumulus in a shear-free environment, J. Atmos. Sci. 46, 23, 3513-3541.
  • Grabowski, W.W., and H. Morrison (2008), Toward the mitigation of spurious cloudedge supersaturation in cloud models, Month. Weather Rev. 136, 3, 1224-1234.
  • Grabowski, W.W., and P.K. Smolarkiewicz (2002), A multiscale anelastic model for meteorological research, Month. Weather Rev. 130, 4, 939-956.
  • Grabowski,W.W., and L.-P.Wang (2009), Diffusional and accretional growth of water drops in a rising adiabatic parcel: effects of the turbulent collision kernel, Atmos. Chem. Phys. 9, 7, 2335-2353.
  • Grabowski,W.W., O. Thouron, J.-P. Pinty, and J.-L. Brenguier (2010), A hybrid bulkbin approach to model warm-rain processes, J. Atmos. Sci. 67, 2, 385-399.
  • Grabowski, W.W., M. Andrejczuk, and L.-P. Wang (2011), Droplet growth in a bin warm-rain scheme with Twomey CCN activation, Atmos. Res. 99, 2, 290-301.
  • Heintzenberg, J., and R.J. Charlson (eds.) (2009), Clouds in the Perturbed Climate System: Their Relationship to Energy Balance, Atmospheric Dynamics, and Precipitation, Struengmann Forum Report, MIT Press, Cambridge, MA, 597 pp.
  • Hill, A.A., G. Feingold, and H. Jiang (2009), The influence of entrainment and mixing assumption on aerosol-cloud interactions in marine stratocumulus, J. Atmos. Sci. 66, 5, 1450-1464.
  • Holland, J.Z., and E.M. Rasmusson (1973), Measurements of the atmospheric mass, energy, and momentum budgets over a 500-kilometer square of tropical ocean, Month. Weather Rev. 101, 44-55.
  • Margolin, L.G., P.K. Smolarkiewicz, and Z. Sorbjan (1999), Large-eddy simulations of convective boundary layers using nonoscillatory differencing, Physica D 133, 390-397.
  • McFarlane, S.A., and W.W. Grabowski (2007), Optical properties of shallow tropi cal cumuli derived from ARM ground-based remote sensing, Geophys. Res. Lett. 34, L06808.
  • Morrison, H., and W.W. Grabowski (2007), Comparison of bulk and bin warm rain microphysics models using a kinematic framework, J. Atmos. Sci. 64, 2839-2861.
  • Morrison, H., and W.W. Grabowski (2008), Modeling supersaturation and subgridscale mixing with two-moment bulk warm microphysics, J. Atmos. Sci. 65, 3, 792-812.
  • Paluch, I.R., and C.A. Knight (1984), Mixing and the evolution of cloud droplet size spectra in a vigorous continental cumulus, J. Atmos. Sci. 41, 11, 1801-1815.
  • Pincus, R., and M.B. Baker (1994), Effect of precipitation on the albedo susceptibility of clouds in the marine boundary layer, Nature 372, 250-252.
  • Prusa, J.M., P.K. Smolarkiewicz, and A.A. Wyszogrodzki (2008), EULAG, a computational model for multiscale flows, Comput. Fluids 37, 9, 1193-1207.
  • Rasmussen, R.M., I. Geresdi, G. Thompson, K. Manning, and E. Karplus (2002), Freezing drizzle formation in stably stratified layer clouds: The role of radiative cooling of cloud droplets, cloud condensation nuclei, and ice initiation, J. Atmos. Sci. 59, 4, 837-860.
  • Siebesma, A.P., C.S. Bretherton, A. Brown, A. Chlond, J. Cuxart, P.G. Duynkerke, H. Jiang, M. Khairoutdinov, D. Lewellen, C.-H. Moeng, E. Sanchez, B. Stevens, and D.E. Stevens (2003), A large eddy simulation intercomparison study of shallow cumulus convection, J. Atmos. Sci. 60, 10, 1201-1219.
  • Slawinska, J., W.W. Grabowski, H. Pawlowska, and H. Morrison (2011), Droplet activation and mixing in large-eddy simulation of a shallow cumulus field, J. Atmos. Sci. (in print).
  • Smolarkiewicz, P.K. (2006), Multidimensional positive definite advection transport algorithm: an overview, Int. J. Numer. Meth. Fluids 50, 10, 1123-1144.
  • Smolarkiewicz, P.K., andW.W. Grabowski (1990), The multidimensional positive definite advection transport algorithm: nonoscillatory option, J. Comput. Phys. 86, 2, 355-375.
  • Smolarkiewicz, P.K., and J. Szmelter (2009), Iterated upwind schemes for gas dynamics, J. Comput. Phys. 228, 33-54.
  • Smolarkiewicz, P.K., L.G. Margolin, and A.A. Wyszogrodzki (2001), A class of nonhydrostatic global models, J. Atmos. Sci. 58, 4, 349-364.
  • Smoluchowski, M. (1916), Drei Vortraege ueber Diffusion, Brownsche Bewegung und Koagulation von Kolloidteilchen, Phys. Z. 17, 557-585.
  • Su, C.-W., S.K. Krueger, P.A. McMurtry, and P.H. Austin (1998), Linear eddy modeling of droplet spectral evolution during entrainment and mixing in cumulus clouds, Atmos. Res. 47-48, 41-58.
  • Twomey, S. (1959), The nuclei of natural cloud formation part II: The supersaturation in natural clouds and the variation of cloud droplet concentration, Pure Appl. Geophys. 43, 243-249.
  • Twomey, S. (1974), Pollution and the planetary albedo, Atmos. Environ. 8, 12, 1251-1256.
  • Twomey, S. (1977), The influence of pollution on the shortwave albedo of clouds, J. Atmos. Sci. 34, 7, 1149-1152.
  • Warner, J. (1969), The microstructure of cumulus cloud. Part II. The effect on droplet size distribution of the cloud nucleus spectrum and updraft velocity, J. Atmos. Sci. 26, 6, 1272-1282.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL1-0017-0005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.