PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multi-scale waves in sound-proof global simulations with EULAG

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
EULAG is a computational model for simulating flows across a wide range of scales and physical scenarios. A standard option employs an anelastic approximation to capture nonhydrostatic effects and simultaneously filter sound waves from the solution. In this study, we examine a localized gravity wave packet generated by instabilities in Held-Suarez climates. Although still simplified versus the Earth's atmosphere, a rich set of planetary wave instabilities and ensuing radiated gravity waves can arise. Wave packets are observed that have lifetimes ≤ 2 days, are negligibly impacted by Coriolis force, and do not show the rotational effects of differential jet advection typical of inertia-gravity waves. Linear modal analysis shows that wavelength, period, and phase speed fit the dispersion equation to within a mean difference of ∼ 4 per cent, suggesting an excellent fit. However, the group velocities match poorly even though a propagation of uncertainty analysis indicates that they should be predicted as well as the phase velocities. Theoretical arguments suggest the discrepancy is due to nonlinearity - a strong southerly flow leads to a critical surface forming to the southwest of the wave packet that prevents the expected propagation.
Czasopismo
Rocznik
Strony
1135--1157
Opis fizyczny
Bibliogr. 36 poz.
Twórcy
autor
Bibliografia
  • Achatz, U., R. Klein, and F. Senf (2010), Gravity waves, scale asymptotics and the pseudo-incompressible equations, J. Fluid Mech. 663, 120-147.
  • Andrews, D.G., J.R. Holton, and C.B. Leovy (1987), Middle Atmosphere Dynamics, Ch. 4, Academic Press Inc., Orlando, FL, 150-219.
  • Arakawa, A., and C.S. Konor (2009), Unification of the anelastic and quasihydrostatic systems of equations, Month.Weather Rev. 137, 2, 710-726.
  • Berrisford, P., B.J. Hoskins, and E. Tyrlis (2007), Blocking and Rossby wave breaking on the dynamical tropopause in the southern hemisphere, J. Atmos. Sci. 64, 8, 2881-2898.
  • Bretherton, F.P. (1966), The propagation of groups of internal gravity waves in a shear flow, Quart. J. Roy. Met. Soc. 92, 394, 466-480.
  • Bretherton, F.P. (1971), The general linearized theory of wave propagation. In: Mathematical Problems in the Geophysical Sciences: 1. Geophysical Fluid Dynamics, Lectures in Applied Mathematics, Vol. 13, American Math. Soc., Providence, RI, 61-102.
  • Clark, T.L., and R.D. Farley (1984), Severe downslope windstorm calculations in two and tree spatial dimensions using anelastic interactive grid nesting: a possibile mechanism for gustiness, J. Atmos. Sci. 41, 3, 329-350.
  • Davies, T., A. Staniforth, N. Wood, and J. Thuburn (2003), Validity of anelastic and other equation sets as inferred from normal-mode analysis, Quart. J. Roy. Met. Soc. 129, 2761-2775.
  • Durran, D.R. (1989), Improving the anelastic approximation, J. Atmos. Sci. 46, 1453-1461.
  • Held, I.M., and M.J. Suarez (1994), A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models, Bull. Amer. Meteor. Soc. 75, 10, 1825-1830.
  • Holton, J.R. (2004), An Introduction to Dynamic Meteorology, Section 7.6, 4th ed., Elsevier Academic Press, Amsterdam, 208-213.
  • Houghton, J.T. (1986), The Physics of Atmospheres, Appendix 5, 2nd ed., Cambridge University Press, Cambridge, 232-234.
  • Jablonowski, C., and D.L.Williamson (2006), Baroclinic wave test case for dynami cal cores of general circulation models: Model intercomparisons, NCAR Technical Note.
  • Klein, R., (2010), On the regime of validity of sound-proof model equations for atmospheric flows. In: ECMWF Workshop on Nonhydrostatic Modelling, 8-10 November 2010, Reading, United Kingdom, http://www.ecmwf.int/publications/library/do/references/list/201010.
  • Klein, R., U. Achatz, D. Bresch, O.M. Knio, and P.K. Smolarkiewicz (2010), Regime of validity of soundproof atmospheric flow models, J. Atmos. Sci. 67, 10, 3226-3237.
  • Lipps, F.B., and R.S. Hemler (1982), A scale analysis of deep moist convection and some related numerical calculations, J. Atmos. Sci. 39, 10, 2192-2210.
  • Novikov, E.A. (1993), Discussion “Small scale vortices in turbulent flows”. In: Th. Dracos and A. Tsinober (eds.), Proc. New Approaches and Concepts in Turbulence, 9-13 September 1991, Monte Verità, Birkhäuser.
  • O’Sullivan, D., and T.J. Dunkerton (1995), Generation of inertia-gravity waves in a simulated life cycle of baroclinic instability, J. Atmos. Sci. 52, 21, 3695-3716.
  • Pelly, J.L., and B.J. Hoskins (2003), A new perspective in blocking, J. Atmos. Sci. 60, 5, 743-755.
  • Plougonven, R., and C. Synder (2007), Inertia-gravity waves spontaneously generated by jets and fronts. Part I: different baroclinic life cycles, J. Atmos. Sci. 64, 7, 2502-2520.
  • Prusa, J.M., and W.J. Gutowski (2006), MPDATA and grid adaptivity in geophysical fluid flow models, Int. J. Num. Meth. Fluids 50, 10, 1207-1228.
  • Prusa, J.M., and W.J. Gutowski (2010), Multi-scale features of baroclinic waves in sound-proof, global simulations with EULAG. In: Proc. fifth European Conference on Computational Fluid Dynamics, 14-17 June 2010, Lisbon, Portugal, CD-ROM, paper #1453.
  • Prusa, J.M., and P.K. Smolarkiewicz (2003), An all-scale anelastic model for geophysical flows: dynamic grid deformation, J. Comput. Phys. 190, 2, 601-622.
  • Prusa, J.M., P.K. Smolarkiewicz, and R.R. Garcia (1996), Propagation and breaking at high altitudes of gravity waves excited by tropospheric forcing, J. Atmos. Sci. 53, 15, 2186-2216.
  • Prusa, J.M., P.K. Smolarkiewicz, and A.A. Wyszogrodzki (2008), EULAG, a computational model for multiscale flows, Comput. Fluids 37, 9, 1193-1207.
  • Rider, W.J. (2006), The relationship of MPDATA to other high-resolution methods, Int. J. Num. Meth. Fluids 50, 10, 1145-1158.
  • Smith, R.B. (1979), The influence of mountains on the atmosphere, Adv. Geophys. 21, 87-230.
  • Smolarkiewicz, P.K. (2006), Multidimensional positive definite advection transport algorithm: an overview, Int. J. Num. Meth. Fluids 50, 10, 1123-1144.
  • Smolarkiewicz, P.K., and J.M. Prusa (2002), Forward-in-time differencing for fluids: simulation of geophysical turbulence. In: D. Drikakis and B.J. Guertz (eds.), Turbulent Flow Computation, Ch. 8, Kluwer Academic Publishers, Dordrecht, 279-312.
  • Smolarkiewicz, P.K., and J.A. Pudykiewicz (1992), A class of semi-Lagrangian approximations for fluids, J. Atmos. Sci. 49, 22, 2082-2096.
  • Smolarkiewicz, P.K., and J. Szmelter (2011), A nonhydrostatic unstructured-mesh soundproof model for simulation of internal gravity waves, Acta Geophys. 59, 6.
  • Smolarkiewicz, P.K., and C.L. Winter (2010), Pores resolving simulation of Darcy flows, J. Comput. Phys. 229, 9, 3121-3133.
  • Smolarkiewicz, P.K., V. Grubisic, and L.G. Margolin (1997), On forward-in-time differencing for fluids: stopping criteria for iterative solutions of anelasticpressure equations, Month. Weather Rev. 125, 4, 647-654.
  • Smolarkiewicz, P.K., L.G. Margolin, and A.A. Wyszogrodzki (2001), A class of nonhydrostatic global models, J. Atmos. Sci. 58, 4, 349-364.
  • Waite, M.L., and P.K. Smolarkiewicz (2008), Instability and breakdown of a vertical vortex pair in a strongly stratified fluid, J. Fluid Mech. 606, 239-273.
  • Zhang, F. (2004), Generation of mesoscale gravity waves in upper-tropospheric jetfront systems, J. Atmos. Sci. 61, 4, 440-457.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL1-0017-0003
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.