PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Distributions of microcanonical cascade weights of rainfall at small timescales

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Empirical frequency distributions of multiplicative cascade weights, or breakdown coefficients, at small timescales are analyzed for 5-min precipitation time series from four gauges in Germany. It is shown that histograms of the weights, W, are strongly deformed by the recording precision of rainfall amounts. A randomization procedure is proposed to statistically remove the artifacts due to precision errors in the original series. Evolution of the probability distributions of W from beta-like for large timescales to combined beta-normal distribution with a pronounced peak at W ≈ 0.5 for small timescales is observed. A new 3N-B distribution built from 3 separate normal, N, distributions and one beta, B, distribution is proposed for reproduction of the empirical histograms of W at small timescales. Parameters of the 3N-B distributions are fitted for all gauges and analyzed timescales. Microcanonical cascades models with a generator based on 3N-B distributions are developed and their performance at disaggregating precipitation at 1280-min intervals down to 5-min intervals is evaluated.
Czasopismo
Rocznik
Strony
1013--1043
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
autor
autor
autor
  • Institute of Environmental Engineering, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland, pawel.licznar@up.wroc.pl
Bibliografia
  • Ahrens, B. (2003), Rainfall downscaling in an alpine watershed applying a multiresolution approach, J. Geophys. Res. 108, D8, 8388.
  • Cârsteanu, A., and E. Foufoula-Georgiou (1996), Assessing dependence among weights in a multiplicative cascade model of temporal rainfall, J. Geophys. Res. 101, D21, 26363-26370.
  • Cârsteanu, A., V. Venugopal, and E. Foufoula-Georgiou (1999), Event-specific multiplicative cascade models and an application to rainfall, J. Geophys. Res. 104, D24, 31611-31622.
  • de Lima, M.I.P. (1998), Multifractals and the temporal structure of rainfall, Ph.D. Thesis, Wageningen Agricultural University, Wageningen.
  • Güntner, A., J. Olsson, A. Calver, and B. Gannon (2001), Cascade-based disaggregation of continuous rainfall time series: the influence of climate, Hydrol. Earth Syst. Sci. 5, 2, 145-164.
  • Harris, D., M. Menabde, A. Seed, and G. Austin (1996), Multifractal characterization of rain fields with a strong orographic influence, J. Geophys. Res. 101, D21, 26405-26414.
  • Harris, D., A. Seed, M. Menabde, and G. Austin (1997), Factors affecting multiscaling analysis of rainfall time series, Nonlin. Processes Geophys. 4, 3, 137-156.
  • Harris, D., M. Menabde, A. Seed, and G. Austin (1998), Breakdown coefficients and scaling properties of rain fields, Nonlin. Processes Geophys. 5, 2, 93-104.
  • Koutsoyiannis, D. (2003), Rainfall disaggregation methods: Theory and applications. In: D. Piccolo and L. Ubertini (eds.), Proc. Workshop on Statistical and Mathematical Methods for Hydrological Analysis, Rome, 1-23, Universitá di Roma ”La Sapienza”, http://itia.ntua.gr/en/docinfo/570.
  • Langousis, A., and D. Veneziano (2007), Intensity-duration-frequency curves from scaling representations of rainfall, Water Resour. Res. 43, W02422.
  • Licznar, P. (2009), Synthetic Rainfall Time-series Generators for Needs of Stormwater and Combined Sewage Systems Modelling, Monographs 77, Wrocław University of Environtal and Life Sciences, Wrocław (in Polish).
  • Licznar, P., J. Łomotowski, and D.E. Rupp (2011), Random cascade driven rainfall disaggregation for urban hydrology: An evaluation of six models and a new generator, Atmos. Res. 99, 3-4, 563-578.
  • Marshak, A., A. Davis, R. Cahalan, and W. Wiscombe (1994), Bounded cascade models as nonstationary multifractals, Phys. Rev. E 49, 1, 55-69.
  • Menabde, M., and M. Sivapalan (2000), Modeling of rainfall time series and extremes using bounded random cascades and levy-stable distributions, Water Resour. Res. 36, 11, 3293-3300.
  • Menabde, M., D. Harris, A. Seed, G. Austin, and D. Stow (1997), Multiscaling properties of rainfall and bounded random cascades, Water Resour. Res. 33, 12, 2823-2830.
  • Molnar, P., and P. Burlando (2005), Preservation of rainfall properties in stochastic disaggregation by a simple random cascade model, Atmos. Res. 77, 1-4, 137-151.
  • Olsson, J. (1998), Evaluation of a scaling cascade model for temporal rainfall disaggregation, Hydrol. Earth Syst. Sci. 2, 1, 19-30.
  • Over, T.M., and V.K. Gupta (1994), Statistical analysis of mesoscale rainfall: Dependence of a random cascade generator on large-scale forcing, J. Appl. Meteor. 33, 12, 1526-1542.
  • Pathirana, A., S. Herath, and T. Yamada (2003), Estimating rainfall distributions AT high temporal resolutions using a multifractal model, Hydrol. Earth Syst. Sci. 7, 5, 668-679.
  • Paulson, K.S., and P.D. Baxter (2007), Downscaling of rain gauge time series by multiplicative beta cascade, J. Geophys. Res. 112, D09105.
  • Robert, C.P. (1995), Simulation of truncated normal variables, Stat. Comput. 5, 2, 121-125.
  • Rupp, D.E., R.F. Keim, M. Ossiander, M. Brugnach, and J.S. Selker (2009), Time scale and intensity dependency in multiplicative cascades for temporal rainfall disaggregation, Water Resour. Res. 45, W07409.
  • Tessier, Y., S. Lovejoy, and D. Schertzer (1993), Universal multifractals: Theory and observations for rain and clouds, J. Appl. Meteor. 32, 2, 223-250.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL1-0015-0022
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.