PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Power-law velocity profile in turbulent boundary layers: An integral reynolds-number dependent solution

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Geophysical flows of practical interest encompass turbulent boundary layer flows. The velocity profile in turbulent flows is generally described by a log- or a power-law applicable to certain zones of the boundary layer, or by wall-wake law for the entire zone of the boundary layer. In this study, a novel theory is proposed from which the power-law velocity profile is obtained for the turbulent boundary layer flow. The new power-law profile is based on the conservation of mass and the skin friction within the boundary layer. From the proposed theory, analytical expressions for the power-law velocity profile are presented, and their Reynolds-number dependency is highlighted. The velocity profile, skin friction coefficient and boundary layer thickness obtained from the proposed theory are validated by the reliable experimental data for zero-pressure gradient turbulent boundary layers. The expressions for Reynolds shear stress and eddy viscosity distributions across the boundary layer are also obtained and validated by the experimental data.
Słowa kluczowe
Czasopismo
Rocznik
Strony
993--1012
Opis fizyczny
Bibliogr. 40 poz.
Twórcy
autor
Bibliografia
  • Afzal, N. (1996),Wake layer in turbulent boundary layer with pressure gradient: Anew approach. In: K. Gersten (ed.) Iutam Symposium on Asymptotic Methods for Turbulent Shear Flows at High Reynolds Numbers: Proceedings of the Iutam Symposium Hes, Springer, London, 95-118.
  • Afzal, N. (2001a), Power law and log law velocity profiles in fully developed turbulent pipe flows: equivalent relations at large Reynolds numbers, Acta Mech. 151, 171-183.
  • Afzal, N. (2001b), Power law and log law velocity profiles in turbulent boundary layer flows: equivalent relations at large Reynolds numbers, Acta Mech. 151, 195-216.
  • Afzal, N. (2005), Analysis of power law and log law velocity profiles in overlap region of a turbulent wall jet, Proc. R. Soc. A 461, 2058, 1889-1910.
  • Afzal, N. (2007), Power law velocity profile in turbulent boundary layers on transitional rough wall, J. Fluids Eng. 129, 8, 1083-1100.
  • Afzal, N. (2008), Power-law velocity profile in a turbulent Ekman layer on a transitional rough surface, Quart. J. Roy. Met. Soc. 134, 634, 1113-1125.
  • Afzal, N., A. Seena, and A. Bushra (2006), Power law turbulent velocity profile in transitional rough pipes, J. Fluids Eng. 128, 3, 548-558.
  • Afzal, N., A. Seena, and A. Bushra (2011), Discussion to velocity profile and flow resistance models for developing chute flow, J. Hydraul. Eng. 137, 8 (in press).
  • Balachandar, R., D. Bakely, and J. Bugg (2002), Friction velocity and power law velocity profile in smooth and rough shallow open channel flows, Can. J. Civ. Eng. 29, 256-266.
  • Barenblatt, G.I. (1993), Scaling laws for fully developed turbulent shear flows. Part I: Basic hypothesis and analysis, J. Fluid Mech. 248, 513-520.
  • Barenblatt, G.I., A.J. Chorin, and V.M. Prostokishin (2000a), A note on the intermedia te region in turbulent boundary layers, Phys. Fluids 12, 2159-2161.
  • Barenblatt, G.I., A.J. Chorin, and V.M. Prostokishin (2000b), Self-similar intermedia te structures in turbulent boundary layers at large Reynolds numbers, J. Fluid Mech. 410, 263-283.
  • Buschmann, M.H., and M. Gad-el-Hak (2003a), Generalized logarithmic law and its consequences, AIAA J. 41, 1, 40-48.
  • Buschmann, M.H., and M. Gad-el-Hak (2003b), Debate concerning the meanvelocity profile of a turbulent boundary layer, AIAA J. 41, 4, 565-572.
  • Buschmann, M.H., and M. Gad-el-Hak (2006), Recent developments in saling of wall-bounded flows, Prog. Aerosp. Sci. 42, 5-6, 419-467.
  • Castro-Orgaz, O. (2009), Hydraulics of developing chute flow, J. Hydraul. Res. 47, 2, 185-194.
  • Castro-Orgaz, O. (2010), Velocity profile and flow resistance models for developing chute flow, J. Hydraul. Eng. 136, 7, 447-452.
  • Castro-Orgaz, O. (2011), Closure to velocity profile and flow resistance models for developing chute flow, J. Hydraul. Eng. 137, 8 (in press).
  • Castro-Orgaz, O., and W.H. Hager (2010), Drawdown curve and turbulent boundary layer development for chute flow, J. Hydraul. Res. 48, 5, 591-602.
  • Chen, C.L. (1991), Unified theory on power laws for resistance, J. Hydraul. Eng. 117, 3, 371-389.
  • Coles, D.E. (1956), The law of the wake in the turbulent boundary layer, J. Fluid Mech. 1, 2, 191-226.
  • Dean, R.B. (1976), A single formula for the complete velocity profile in a turbulent boundary layer, J. Fluids Eng. 98, 723-726.
  • George, W.K. (2007), Is there a universal log-law for turbulent wall-bounded flows? Phil. Trans. Royal Soc. A 365, 789-806.
  • George, W.K., and L. Castillo (1997), The zero pressure-gradient turbulent Bondary layer, Appl. Mech. Rev. 50, 689-729.
  • Granville, P.S. (1976), Modified law of the wake for turbulent shear layers, J. Fluids Eng. 98, 578-580.
  • Guo, J., P.Y. Julien, and R.N. Meroney (2005), Modified log-wake law for zero pressure gradient turbulent boundary layers, J. Hydraul. Res. 43, 421-430.
  • Hinze, J.O. (1975), Turbulence, McGraw-Hill, New York.
  • Koll, K. (2006), Parameterisation of the vertical velocity profile in the wall region over rough surfaces. In: E.C.T.L. Alves et al. (eds.), Proceedings of the Interna 2006, Lisbon, Portugal, Vol. 1, 163-171, Taylor & Francis, London.
  • Krogstad, P.A., R.A. Antonia, and L.W.B. Browne (1992), Comparison between rough- and smooth-wall turbulent boundary layers, J. Fluid Mech. 245, 599-617.
  • Meyer, Z. (2009), Modified logarithmic tachoida applied to sediment transport in a river, Acta Geophys. 57, 2, 743-759.
  • Österlund, J.M. (1999), Experimental studies of zero pressure-gradient turbulent boundary layer flow, Ph.D. Thesis, Royal Inst. of Tech., Stockholm, Sweden.
  • Österlund, J.M., A.V. Johansson, H.M. Nagib, and M.H. Hites (2000), A note on the overlap region in turbulent boundary layers, Phys. Fluids 12, 1, 1-4.
  • Rotta, J.C. (1962), Turbulent boundary layers in incompressible flow, Prog. Aerosp. Sci. 2, 1-220.
  • Rowinski, P.M., J. Aberle, and A. Mazurczyk (2005), Shear velocity estimation in hydraulic research, Acta Geophys. 53, 553-565.
  • Schlichting, H., and K. Gersten (2000), Boundary-Layer Theory, Springer, Berlin.
  • White, F.M. (1991), Viscous Fluid Flow, McGraw-Hill, New York.
  • Wosnik, M., L. Castillo, and W.K. George (2000), A theory for turbulent pipe and channel flows, J. Fluid Mech. 421, 115-145.
  • Zagarola, M.V. (1996), Mean Flow Scaling of Turbulent Pipe Flow, Ph.D. Thesis, Dept. of Mechanical and Aerospace Eng., Princeton Univ., Princeton, NJ.
  • Zagarola, M.V., and A.J. Smits (1998), Mean-flow scaling of turbulent pipe flow, J. Fluid Mech. 373, 33-79.
  • Zagarola, M.V., A.E. Perry, and A.J. Smits (1997), Log laws or power laws: The saling in the overlap region, Phys. Fluids 9, 2094-2100.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL1-0015-0021
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.