PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A uniform stress, multi-grain model for migration recrystallization in polar ice

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A multi-grain model for a migration recrystallization process in polar ice is presented. The model is based on the Sachs-Reuss approximation of the stress homogeneity in a polycrystalline aggregate. An individual crystal of ice is treated as a transversely isotropic and incompressible medium which deforms by viscous creep. The highly anisotropic viscous behaviour of the ice crystal is described by a constitutive law expressing microscopic strain-rate in terms of the deviatoric stress and three fluidity parameters that define different viscous resistances of the crystal in different glide directions. It is assumed that the recrystallization occurs in those crystals in the aggregate which are most slowly deforming, and new crystals are nucleated at orientations which favour the crystal deformation by basal glide. The model predictions are illustrated by results of numerical simulations of simple flows, showing the evolution of the microscopic structure of ice and the variation of macroscopic viscosities with increasing deformations.
Czasopismo
Rocznik
Strony
833--857
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
Bibliografia
  • Alley, R.B. (1992), Flow-law hypotheses for ice-sheet modeling, J. Glaciol. 38, 129, 245-256.
  • Budd, W.F., and T.H. Jacka (1989), A review of ice rheology for ice sheet modelling, Cold Reg. Sci. Technol. 16, 107-144.
  • Chadwick, P. (1999), Continuum Mechanics: Concise Theory and Problems, 2nd ed., Courier Dover Publications, New York.
  • De La Chapelle, S., O. Castelnau, V. Lipenkov, and P. Duval (1998), Dynamic recrystallization and texture development in ice as revealed by the study of deep ice cores in Antarctica and Greenland, J. Geophys. Res. 103, B3, 5091-5105.
  • Durand, G., A. Svensson, S. Kipfstuhl, A. Persson, O. Gagliardini, F. Gillet-Chaulet, J. Sjolte, M. Montagnat, and D. Dahl-Jensen (2009), Evolution of the texture along the EPICA dome C ice core. In: T. Hondoh (ed.), Physics of Ice Core Records II, Hokkaido University, Hokkaido, 91-105.
  • Duval, P. (1981), Creep and fabrics of polycrystalline ice under shear and compression, J. Glaciol. 27, 95, 129-140.
  • Duval, P., and O. Castelnau (1995), Dynamic recrystallization of ice in polar ice sheets, J. Phys. IV 5, C3, 197-205.
  • Duval, P., L. Arnaud, O. Brissaud, M. Montagnat, and S. De La Chapelle (2000), Deformation and recrystallization processes of ice from polar ice sheets, Ann. Glaciol. 30, 1, 83-87.
  • Faria, S.H. (2006), Creep and recrystallization of large polycrystalline masses. III. Continuum theory of ice sheets, Proc. R. Soc. Lond. A 462, 2073, 2797-2816.
  • Faria, S.H., D. Ktitarev, and K. Hutter (2002), Modelling evolution of anisotropy in fabric and texture of polar ice, Ann. Glaciol. 35, 1, 545-551.
  • Faria, S.H., G.M. Kremer, and K. Hutter (2003), On the inclusion of recrystallization processes in the modeling of induced anisotropy in ice sheeets: a thermodynamicist’s point of view, Ann. Glaciol. 37, 1, 29-34.
  • Gow, A.J., D.A. Meese, R.B. Alley, J.J. Fitzpatrick, S. Anandakrishnan, G.A. Woods, and B.C. Elder (1997), Physical and structural properties of the Greenland Ice Sheet Project 2 ice core: A review, J. Geophys. Res. 102, C12, 26559-26575.
  • Ktitarev, D., G. Gödert, and K. Hutter (2002), Cellular automaton model for recrystallization, fabric, and texture development in polar ice, J. Geophys. Res. 107, B8, 2165.
  • Meyssonnier, J., and A. Philip (1996), A model for the tangent viscous behaviour of anisotropic polar ice, Ann. Glaciol. 23, 253-261.
  • Morland, L.W. (2002), Influence of lattice distortion on fabric evolution in polar ice, Continuum Mech. Thermodyn. 14, 1, 9-24.
  • Pimienta, P., P. Duval, and V.Y. Lipenkov (1987), Mechanical behavior of anisotropic polar ice. In: Proc. Symp. “The Physical Basis of Ice Sheet Modelling”, August 1987, Vancouver, IAHS Publ. no. 170, 57-66.
  • Placidi, L., K. Hutter, and S.H. Faria (2006), A critical review of the mechanics of polycrystalline polar ice, GAMM-Mitt. 29, 1, 80-117.
  • Placidi, L., R. Greve, H. Seddik, and S.H. Faria (2010), Continuum-mechanical, Anisotropic Flow model for polar ice masses, based on an anisotropic Flow Enhancement factor, Continuum Mech. Thermodyn. 22, 3, 221-237.
  • Staroszczyk, R. (2001), A uniform stress, discrete-grain model for induced anisotropy of ice. In: K. Szmidt (ed.), Applications of Mechanics in Civil- and Hydro-Engineering, IBW PAN Publishing House, Gdansk, 295-314.
  • Staroszczyk, R. (2002), A uniform strain, discrete-grain model for evolving anisotropy of polycrystalline ice, Arch. Mech. 54, 2, 103-126.
  • Staroszczyk, R. (2004), Constitutive Modelling of Creep Induced Anisotropy of Ice, IBW PAN Publishing House, Gdansk.
  • Staroszczyk, R. (2009), A multi-grain model for migration recrystallization in polar ice, Arch. Mech. 61, 3-4, 259-282.
  • Staroszczyk, R., and L.W. Morland (2001), Strengthening and weakening of induced anisotropy in polar ice, Proc. R. Soc. Lond. A 457, 2014, 2419-2440.
  • Thorsteinsson, T., J. Kipfstuhl, and H. Miller (1997), Textures and fabrics in the GRIP ice core, J. Geophys. Res. 102, C12, 26583-26599.
  • Van der Veen, C.J., and I.M. Whillans (1994), Development of fabric in ice, Cold Reg. Sci. Technol. 22, 2, 171-195.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL1-0015-0013
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.