Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:443/baztech/element/bwmeta1.element.baztech-article-BSL1-0014-0019

Czasopismo

Górnictwo Odkrywkowe

Tytuł artykułu

Zawartość wybranych pierwiastków w węglu brunatnym z kopalni Sieniawa i popiołach pozostałych po procesie zgazowania

Autorzy Bubel, F.  Grzelak, A.  Durkalec, M. 
Treść / Zawartość http://www.igo.wroc.pl/publikacje/czasopismo-gornictwo-odkrywkowe/
Warianty tytułu
EN The content of chosen chemical elements in raw brown coal from Sieniawa Coal Mine and gasification ashes
Języki publikacji PL
Abstrakty
PL W pracy przedstawiono wyniki analiz zawartości pierwiastków w surowym węglu brunatnym pochodzącym z kopalni Sieniawa oraz popiołach pozostałych po procesie zgazowania tego węgla, prowadzonego z lekkim niedoborem O2, w temperaturze 1100 °C i ciśnieniu w zakresie 4 - 7 Ba, w modułowym reaktorze w Laboratorium Zgazowania Węgla IGO-Poltegor we Wrocławiu. Zawartość metali (Cd, Cr, Cu, Fe, Mn, Ni, Pb, Zn) oznaczono przy pomocy urządzenia FAAS 3100 firmy Perkin Elmer po wykonaniu dwuetapowej mineralizacji mikrofalowej prób w piecu Speedwave MSW-2, a stężenie Hg spektrometrem absorpcji atomowej AMA 254. Spośród analizowanych pierwiastków w surowym węglu brunatnym najwięcej było żelaza (97340,89 ppm), a najmniej rtęci (0,0569 ppm). Zawartość pozostałych pierwiastków w węglu kształtowała się w zakresie 4,91 ppm (Cr) - 55,87 ppm (Zn). Zawartość metali w popiołach pozostałych po procesie zgazowania węgla była od kilku do kilkunastu razy większa niż w węglu brunatnym. Największą zawartość odnotowano dla żelaza (78705,65 ppm), a najmniejszą dla rtęci (0,00672 ppm). Zawartość pozostałych pierwiastków w popiołach kształtowała się w zakresie 5,50 ppm (Cd) - 716,38 ppm (Mn). Znacznie niższa zawartość rtęci (Hg) w popiele po zgazowaniu węgla, w porównaniu do jej zawartości w surowym węglu brunatnym, świadczy o łatwym przechodzeniu tego pierwiastka z fazy stałej do gazowej.
EN Content of chemical elements in raw brown coal from Sieniawa Coal Mine and ashes formed during gasification of that coal was analyzed and the results are presented in the paper. Gasification was conducted with a slight depletion of O2 at temperature of 1100 °C and pressure ranging from 4 to 7 Ba in a module reactor in the Coal Gasification Laboratory at Poltegor-Institute, Wroclaw. Metal content (Cd, Cr, Cu, Fe, Mn, Ni, Pb, Zn) was determined with the use of FAAS 3100 equipment by Perkin Elmer after completion of two-stage microwave mineralization of samples in the Speedwave MSW-2 furnace. Atomic absorption spectrometer AMA 254 was used for determination of Hg content. Among analyzed elements in raw brown coal the highest amount was noted for iron (97340,89 ppm), and the lowest for mercury (0,0569 ppm). The content of remaining elements in coal ranged from 4,91 ppm (Cr) to 55,87 ppm (Zn). Metal content in ashes formed in the coal gasification process was from a few to over a dozen times higher than in brown coal. The highest content was noted for iron (78705,65 ppm) and the lowest for mercury (0,00672 ppm). The amount of remaining elements ranged from 5,50 ppm (Cd) to 716,38 ppm (Mn). Significantly lower content of mercury (Hg) in gasification ash, compared to its content in raw brown coal, proves easy transformation of this element from solid to gas.
Słowa kluczowe
PL węgiel brunatny   zgazowanie węgla   popioły   pierwiastki śladowe  
EN brown coal   coal gasification   ashes   trace elements  
Wydawca Instytut Górnictwa Odkrywkowego "Poltegor-Instytut"
Czasopismo Górnictwo Odkrywkowe
Rocznik 2010
Tom R. 51, nr 6
Strony 81--87
Opis fizyczny Bibliogr. 45 poz.
Twórcy
autor Bubel, F.
autor Grzelak, A.
autor Durkalec, M.
  • Poltegor-Instytut IGO, Wrocław
Bibliografia
[1] Sekine Y, Sakajin K., Kikuchi E., Matsukata M., Release behaviour of trace elements from coal during high-temperature processing. Powder Technol 2008, 180: 210-215
[2] Lachas H., Richaud R., Jarvis K. E., Herod A. A., Dugwell D.R., Kandiyoti R., Determination of 17 trace elements in coal and ash reference materials by ICP-MS applied to milligram sample size. Analyst 1999, 124: 177-184
[3] Swaine D.J., Tracę Elements in Coal, (M), Butterworth, London, 1990
[4] Erickson T., Tracę element emissionsproject. Final technicalprogress report, Energy and environmental research center. Prepared for the Federal Energy Technology Center. 99-EERC-06-06, June 1999
[5] Xu M., Yan R., Zheng C, Qiao Y., Han J., Sheng C, Status of trace element emission in a coal combustion process: a review. Fuel Processing Technology 2003, 85: 215- 237.
[6] Ratafia-Brown J., Overview of trace elementpartitioning inflames andfurnaces of utility coal-fired boilers. Fuel Process Tech 1994, 39: 139-57
[7] Helble J., Trace element partitioning during coal gasification. Fuel 1986, 75(8): 931-9.
[8] Lu H, Chen H, Li W, Li B., Occurrence and volatilization behaviour of Pb, Cd, Cr in Yima coal during fluidized-bed pyrolysis. Fuel 2004, 83: 39-45
[9] Guo R, Yang J, Liu D, Liu Z., Transformation behavior of tracę elements during coal pyrolysis. Fuel Process Technol 2002, 77-78: 137-143
[10] Guo R. X., Yang, J. L., Liu Z. Y., Behavior of trace elements during pyrolysis of coal in a simulated drop-tube reactor. Fuel 2004, 83: 639-643
[11] Iwashita A., Tanamachi S., Nakajima T., Takanashi H., Ohki A., Removal of mercury from coal by mildpyrolysis and leaching behavior of mercury. Fuel 2004, 83: 631-638
[12] Benson S.A., Erikson T.A., O'Keefe C.A., Katrinak K., Allan S.E., Hassett D.J., Hauserman W.B., Tracę Metal Trans-formations in Gasification. Achanced Coal-Fired Power Systems, USDOE, Morgantown Energy Technology Center, Morgantown, WV, 16-18 My, 1996
[13] Vejahati F., Xu Z., Gupta R., Trace elements in coal: Associations with coal and minerals and their behavior Turing coal utilization - A review. Fuel 2010, 89: 904-911
[14] Clarke L.B, Sloss L.L., Trace elements - emissions from coal combustion and gasification. London. IEA Coal Research; 1992. p. 111
[15] Querol X., Fernandez-Turiel J., López-Soler A., Trace elements in coal and their behaviour during combustion in a large power station. Fuel 1995, 74(3): 331-43
[16] Smith I.M., Trace elements from coal combustion: emissions. London: IEA Coal Research; 1987, p. 87
[17] Clarke L.B., Management of by-products from IGCCpower generation. IEA Coal Research, IEACR/38, London, UK; 1991
[18] Liu S.Q., Wang Y.T., Li Y, Oakey J., Thermodynamic eąuilibrium study of trace element transformation during underground coal gasification. Fuel Processing Technology 2006, 87: 209 - 215
[19] Li X., Grace J.R., Watkinson A.P., Lim C.J., Ergudenler A., Eąuilibrium modeling of gasification: a free energy minimization approach and its application to a circulating fluidized bed coal gasifier. Fuel 2001, 80: 195-207
[20] Thompson D., Argent B.B., Prediction of the distribution of tracę elements between the product streams of the Prenflo gasifier and comparison with reported data. Fuel 2002, 81: 555-70
[21] Bunt J.R., Waanders F.B., Trace element behaviour in the Sasol-Lurgi MKIVFBDB gasifier - Part 1 (The volatile elements: Hg, As, Se, Cd and Pb). Fuel 2008, 87: 2374-87
[22] Bunt J.R., Waanders F.B., Tracę element behaviour in the Sasol-Lurgi MKIVFBDB Gasifier - Part 2 (The Semi-volatile elements: Cu, Mo, Ni and Zn). Fuel 2009, 88: 961-9
[23] Bunt, J.R., Waanders F.B., Tracę element behaviour in the Sasol-Lurgifixed-bed dry-bottom gasifier. Part 3 - The non--volatile elements: Ba, Co, Cr, Mn, and V. Fuel 2010, 89: 537-548
[24] Font O., Querol X., Huggins F.E., Chimenos J.M,. Fernandez, A.I. Burgos, S.; Pena, F.G., Speciation of Major and Selected Trace Elements in IGCCFlyAsh. Fuel, 2005, 84: 1364-1371
[25] Font O., Querol X., Piana F., López-Soler A., Chimenos J.M., March M.J., Espiell F., Burgos S., Garcia F., Alliman C, Occurrence and distribution of valuable metals in fly ash from Puertollano IGCC power plant, Spain. International ash utilization symposium, 2001, 22nd-24th October, Hyatt Regency Lexington, Lexington, KY, USA
[26] Kristiansen A., Understanding Coal Gasification IEACR/86. IEA Coal Research, 1996, London, UK
[27] Symanowicz B., Kalembasa S., Zawartość żelaza i manganu w węglach brunatnych i ich popiołach. Roczn. PZH 2004, 55: 227-231
[28] Goldsztejn R, Koncentracje wybranych pierwiastków w węglu brunatnym ze złoża Ościsłowo w rejonie Konina. Prace Naukowe Instytutu Górnictwa Politechniki Wrocławskiej 2007, 118 (33): 17-24
[29] Beaton A.P., Kalkreuth W., MacNeil D., The geology, petrology and geochemistry of coal seams from the St. Rose and Chimney Corner coalfields, Cape Breton, Nova Scotia, Canada. Int. J. Coal Geol. 1993, 24: 47-73
[30] Swaine D.J., Trace Elements in Coal, (M), Butterworth, London, 1990
[31] Swaine D.J., Goodarzi F., Environmental Aspects of Tracę Elements in Coal, (M), Kluwer, Dordrecht, 1995. 232 M. Xu et al. / Fuel Processing Technology 2003, 85: 215-237
[32] Raask E., The mode of occurrence and concentration of trace elements in coal, Fuel 1985, 11 (1): 97-118
[33] Filippidis A., Georgakopoulos A., Kassoli-Fournaraki A., Misaelides R, Yiakkoupis R, Broussoulis J., Trace element contents in cornposited samples of three lignite seams from the central part of the Drama lignite deposit, Macedonia, Greece. International Journal of Coal Geology 1996, 29: 219-234
[34] Karayigit A.I., Gayer R. A., Ortac F.E., Goldsmith S., Trace elements in the Lower. Pliocenefossiliferous Kangal lignites, Sivas, Turkey. Internat. J. Coal Geology 2001, 47: 73-89
[35] Querol X., Whateley, M.K.G., Fernandez Turiel, J.L., Tuncali, E., Geological controls on the mineralogy and geochemistry of the Beypazary lignite, central Anatolia, Turkey. Int. J. Coal Geol. 1997, 33: 255-271
[36] Swaine D.J., Trace Elements in Coal. Butterworths, London, 1990, pp. 290
[37] Tokarska A., Badania wstępne nad upłynnianiem węgli brunatnych. Rocz. Ochr. Srod. 2009, 11 (2): 1095-1104
[38] Kortenski J., Sotirov A., Trace and major element content and distribution in Neogene lignite from the Sofia Basin,Bulgaria. International Journal of Coal Geology 2002, 52 (1-4): 63-82
[39] Ruppert L., Finkelman R., Boti E., Milosavljevic M., Tewalt S., Simon N., Dulong R, Origin and significance ofhigh nickel and chromium concentrations in Pliocene lignite of the Kosovo Basin, Serbia. International Journal of Coal Geology 1996, 29, (4): 235-258
[40] Boj akowska L, Kadm w surowcach mineralnych polski i jego potencjalna emisja do środowiska. Ochrona Środowiska i Zasobów Naturalnych 2009, 40: 22-30
[41] Životić D., Wehner H., Cvetkovic O., Jovan čiće vić B., Gržetić L, SchedercG., Vidal A., Šajano vić A., Ercego vac M., Simie V., Petrological, organie geochemistrycand geochemical characteristics of coal from the Soko mine, Serbia. Int. J.Coal Geol. 2008, 73 (3-4): 285-306
[42] Warwie K R, Crowley S., Coal Geology of Paleocene-Eocene Cahert Bluff Formation (Wilcox Group) and Eocene Manning Formation (Jackson Group) in east-centralcTexas. U.S. Geological Survey Open-File Raport 1995, 95-595
[43] Kornik J, Horvat M., Mandic V, Logar M., Influence of the Sostanj coal-fired thermal powerplant on mercury and metyl mercury concentrations in Lake Velenje, Slovenia. Science Total Environ 2000, 259: 85-95
[44] Mason H. Somerville, James L. Elder A., A Comparison of Trace Element Analyses ofNorth Dakota Lignite Laboratory Ash With Lurgi GasifierAsh and Their Use in EnvironmentalAnalyses. Symposium Proceedings: Environmental Aspects Of Fuel Conversion Technology, Iii, September 1977, Hollywood, Florida p. 292-315
[45] Li W.-Y., Zhong L., Feng, J., Xie, K.-C, Release Behavior of As, Hg, Pb, and Cd during Coal Gasification. Energy Sources 2010, 32(9): 818-825
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BSL1-0014-0019
Identyfikatory