PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On integral approach to regional gravity field modelling from satellite gradiometric data

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Solution of the gradiometric boundary value problems leads to three integral formulas. If we are satisfied with obtaining a smooth solution for the Earth’s gravity field, we can use the formulas in regional gravity field modelling. In such a case, satellite gradiometric data are integrated on a sphere at satellite level and continued downward to the disturbing potential (geoid) at sea level simultaneously. This paper investigates the gravity field modelling from a full tensor of gravity at satellite level. It studies the truncation bias of the integrals as well as the filtering of noise of data. Numerical studies show that by integrating Tzz with 1 mE noise and in a cap size of 7°, the geoid can be recovered with an error of 12 cm after the filtering process. Similarly, the errors of the recovered geoids from Txz,yz and Txx-yy, 2xy are 13 and 21 cm, respectively.
Czasopismo
Rocznik
Strony
29--54
Opis fizyczny
Bibliogr. 45 poz.
Twórcy
autor
  • Division of Geodesy, Royal Institute of Technology, Stockholm, Sweden, eshagh@kth.se
Bibliografia
  • Albertella, A, F. Migliaccio, and F. Sansó (2002), GOCE: The earth gravity field by space gradiometry, Celest. Mech. Dyn. Astr. 83, 1-4, 1-15.
  • Arabelos, D., and C.C. Tscherning (1990), Simulation of regional gravity field recovery from satellite gravity gradiometer data using collocation and FFT, J. Geodesy 64, 4, 363-382.
  • Arabelos, D., and C.C. Tscherning (1993), Regional recovery of the gravity field from SGG and SST/GPS data using collocation. In: Study of the Gravity Field Determination Using Gradiometry and GPS, Phase 1, Final Report ESA Contract 9877/92/F/FL, April.
  • Arabelos, D., and C.C. Tscherning (1995), Regional recovery of the gravity field from satellite gravity gradiometer and gravity vector data using collocation, J. Geophys. Res. 100, B11, 22009-22015.
  • Arabelos, D., and C.C. Tscherning (1999), Gravity field recovery from airborne gradiometer data using collocation and taking into account correlated errors, Phys. Chem. Earth A 24, 1, 19-25.
  • Balmino, G., F. Perosanz, R. Rummel, N. Sneeuw, H. Sünkel, and P. Woodworth (1998), European views on dedicated gravity field missions: GRACE and GOCE, Earth Sciences Division Consultation Document, European Space Agency, ESD-MAG-REP-CON-001.
  • Balmino, G., F. Perosanz, R. Rummel, N. Sneeuw, and H. Suenkel (2001), CHAMP, GRACE and GOCE: Mission concepts and simulations, Boll. Geofis. Teor. Appl. 40, 3-4, 309-320.
  • ESA (1999), Gravity field and steady-state ocean circulation mission, Reports for Mission Selection “The Four Candidate Earth Explorer Missions”, ESA Publications Division, ESA SP-1233(1), 217 pp.
  • Eshagh, M. (2008), Non-singular expressions for the vector and the gradient tensor of gravitation in a geocentric spherical frame, Comput. Geosci. 34, 12, 1762-1768.
  • Eshagh, M. (2009a), On satellite gravity gradiometry, Ph.D. Thesis in Geodesy, Royal Institute of Technology (KTH), Stockholm, Sweden.
  • Eshagh, M. (2009b), Spatially restricted integrals in gradiometric boundary value problems, Artif. Satel. 44, 4, 131-148, DOI: 10.2478/v10018-009-0025-4.
  • Eshagh, M. (2010), Alternative expressions for gravity gradients in local northoriented frame and tensor spherical harmonics, Acta Geophys. 58, 2, 215-243.
  • Eshagh, M., and L.E. Sjöberg (2009), Satellite Gravity Gradiometry: An Approach to High Resolution Gravity Field Modelling from Space, VDM Verlag, 244 pp., ISBN-13:978-3639203509.
  • Heiskanen, W., and H. Moritz (1967), Physical Geodesy, W.H. Freeman and Co., San Francisco – London, 364 pp.
  • Ilk, K.H. (1983), Ein Beitrag zür Dynamik ausgedehnter Körper-Gravitationswechselwirkung, Deutsche Geodätische Kommission Bayer Akad. Wiss., Reihe C, Heft 288, 181 pp.
  • Janak, J., Y. Fukuda, and P. Xu (2009), Application of GOCE data for regional gravity field modeling, Earth Planets Space 61, 7, 835-843.
  • Koop, R. (1993), Global gravity field modelling using satellite gravity gradiometry, Netherlands Geodetic Commission, Delft.
  • Kotsakis, C. (2007), A covariance-adaptive approach for regularized inversion in linear models, Geophys. J. Int. 171, 2, 509-522.
  • Krarup, T. (1969), A contribution to the mathematical foundation of physical geodesy, Geod. Inst. Copenhagen, Meddelelse, No. 44, 80 pp.
  • Krarup, T., and C.C. Tscherning (1984), Evaluation of isotropic covariance functions of torsion balance observations, J. Geodesy 58, 2, 180-192.
  • Lemoine, F.G., S.C. Kenyon, J.K. Factor, R.G. Trimmer, N.K. Pavlis, D.S. Chinn, C.M. Cox, S.M. Klosko, S.B. Luthcke, M.H. Torrence, Y.M. Wang, R.G. Williamson, E.C. Pavlis, R.H. Rapp, and T.R. Olson (1998), The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) geopotential model EGM96, NASA/TP-1998-206861.
  • Martinec, Z. (2003), Green’s function solution to spherical gradiometric boundaryvalue problems, J. Geodesy 77, 1-2, 41-49.
  • Müller, J., and M. Wermut (2003), GOCE gradients in various reference frames and their accuracies, Adv. Geosci. 1, 33-38.
  • Novák, P. (2007), Integral inversion of SST data of type GRACE, Stud. Geophys. Geod. 51, 3, 351-367.
  • Novák, P., and E.W. Grafarend (2006), The effect of topographical and atmospheric masses on spaceborne gravimetric and gradiometric data, Stud. Geophys. Geod. 50, 4, 549-582.
  • Paul, M.K., (1978), Recurrence relations for integrals of associated Legendre functions, J. Geodesy 52, 3, 177-190.
  • Petrovskaya, M.S., and A.N. Vershkov (2006), Non-singular expressions for the gravity gradients in the local north-oriented and orbital reference frames, J. Geodesy 80, 3, 117-127.
  • Reed, G.B. (1973), Application of kinematical geodesy for determining the short wave length components of the gravity field by satellite gradiometry, Ohio State University, Dept. of Geod. Science, Rep. No. 201, Columbus, Ohio.
  • Rummel, R. (1997), Spherical spectral properties of the Earth’s gravitational potential and its first and second derivatives. In: Geodetic Boundary Value Problems in View of the One Centimeter Geoid, Springer, Berlin–Heidelberg, 359-404.
  • Rummel, R., M. van Gelderen, R. Koop, E. Schrama, F. Sansò, M. Brovelli, F. Migiliaccio, and F. Sacerdote (1993), Spherical harmonic analysis of satellite gradiometry, Publications on Geodesy, Delft, 39, 120 pp.
  • Simons, F.J., F.A. Dahlen, and M.A. Wieczorek (2006), Spatiospectral concentration on a sphere, SIAM Rev. 48, 3, 504-536.
  • Tapley, B., J. Ries, S. Bettadpur, D. Chambers, M. Cheng, F. Condi, B. Gunter, Z. Kang, P. Nagel, R. Pastor, T. Pekker, S. Poole, and F. Wang (2005), GGM02-An improved Earth gravity field model from GRACE, J. Geodesy 79, 8, 467-478.
  • Tscherning, C.C. (1988), A study of satellite altitude influence on the sensitivity of gravity gradiometer measurements, DGK, Reihe B, Heft 287 (Festschrift R.Sigl), 218-223.
  • Tscherning, C.C. (1989), A local study of the influence of sampling rate, number of observed components and instrument noise on 1 deg. mean geoid and gravity anomalies determined from satellite gravity gradiometer measurements, Ri. Geod. Topo. Foto. 5, 139-146.
  • Tscherning, C. C. (1993), Computation of covariances of derivatives of the anomalous gravity potential in a rotated reference frame, Manuscr. Geodaet. 18,115-123.
  • Tscherning, C.C., R. Forsberg, and M. Vermeer (1990), Methods for regional gravity field modelling from SST and SGG data, Reports of the Finnish Geodetic Institute, No. 90:2, 17 pp.
  • Van Gelderen, M., and R. Rummel (2001), The solution of the general geodetic boundary value problem by least-squares, J. Geodesy 75, 1, 1-11.
  • Van Gelderen, M., and R. Rummel (2002), Corrections to ‘‘The solution of the general geodetic boundary value problem by least squares”, J. Geodesy 76, 2, 121-122.
  • Varshalovich, D.A., A.N. Moskalev, and V.K. Khersonskii (1989), Quantum Theory of Angular Momentum, World Scientific Publ., Singapore.
  • Xu, P. (1992), Determination of surface gravity anomalies using gradiometric observables, Geophys. J. Int. 110, 2, 321-332.
  • Xu, Y.L. (1996), Fast evaluation of the Gaunt coefficients, Math. Com. 65, 1601-1612.
  • Xu, P. (1998), Truncated SVD methods for discrete linear ill-posed problems, Geophys. J. Int. 135, 2, 505-514.
  • Xu, P. (2009), Iterative generalized cross-validation for fusing heteroscedastic data of inverse ill-posed problems, Geophys. J. Int. 179, 1, 182-200.
  • Xu, P., and R. Rummel (1994), A simulation study of smoothness methods in recovery of regional gravity fields, Geophys. J. Int. 117, 2, 472-486.
  • Zieliński, J.B. (1975), Solution of the downward continuation problem by collocation, Bull. Geod. 117, 1, 267-277.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL1-0012-0016
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.