PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Analysis of solute transport in rivers with transient storage and lateral inflow: An analytical study

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Solute transport in rivers with transient storage and lateral inflow has been studied by Transient Storage Model (TSM). Analytical solution of the TSM is obtained by means of Laplace transform. In order to illustrate the use of present analytical solution, physical transport parameters are estimated for the observational data of Uvas Creek tracer experiment. Analytical concentration-time breakthrough curves are found to be in good agreement with the observed concentration-time breakthrough curves. A sensitivity analysis has been performed in order to identify the most critical parameter for predicting concentration. It has been found that lateral inflow rate is the most sensitive and the ratio of crosssectional areas is the least sensitive parameter. A hypothetical situation has been considered to study the effects of background concentrations, lateral inflow concentration and its rate. The analytical solutions show that the solute concentration gets diluted or concentrated due to lateral inflow. Physical mechanisms of the problems are well reproduced by the present analytical solutions and these results can be used for analysis of tracer experiments.
Czasopismo
Rocznik
Strony
1094--1114
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
autor
autor
Bibliografia
  • Avanzino, R.J., G.W. Zellweger, V.C. Kennedy, S.M. Zand, and K.E. Bencala (1984), Results of a solute transport experiment at Uvas Creek, September 1972, US Geol. Surv. Water Resour. Invest. Rep. 84-236, US Geol. Surv., Menlo Park, CA.
  • Bencala, K.E., and R.A. Walters (1983), Simulation of solute transport in a mountains pool-and-riffle stream: A transient storage model, Water Resour. Res. 19, 3, 718-724.
  • Carslaw, H.S., and J.C. Jaeger (1959), Conduction of Heat in Solids, 2nd ed., Clarendon Press, Oxford.
  • Choi, J., J.W. Harvey, and M.H. Conklin (2000), Characterizing multiple timescales of stream and storage zone interaction that affect solute fate and transport in streams, Water Resour. Res. 36, 6, 1511-1518.
  • Coleman, T.F., and Y. Li (1994), On the convergence of interior-reflective Newton methods for nonlinear minimization subject to bounds, Math. Program. 67, 1-3, 189-224.
  • Coleman, T.F., and Y. Li (1996), An interior trust region approach for nonlinear minimization subject to bounds, SIAM J. Optim. 6, 418-445.
  • Czernuszenko, W., and P.M. Rowiński (1997), Properties of the dead-zone model of longitudinal dispersion in rivers, J. Hydraul. Res. 35, 4, 491-504.
  • Davis, P.M., T.C. Atkinson, and T.M.L. Wigley (2000), Longitudinal dispersion in natural channels: 2. The roles of shear flow dispersion and dead zones in the River Severn, UK, Hydrol. Earth Syst. Sci. 4, 3, 355-371.
  • De Smedt, F. (2006), Analytical solutions for transport of decaying solutes in rivers with transient storage, J. Hydrol. 330, 3-4, 672-680.
  • De Smedt, F., and P.J. Wierenga (1979), A generalized solution for solute flow in soils with mobile and immobile water, Water Resour. Res. 15, 5, 1137-1141.
  • De Smedt, F., W. Brevis, and P. Debels (2005), Analytical solution for solute transport resulting from instantaneous injection in streams with transient storage, J. Hydrol. 315, 1-4, 25-39.
  • Fernald, A.G., P.J. Wigington Jr., and D.H. Landers (2001), Transient storage and hyporheic flow along the Willamette River, Oregon: Field measurements and model estimates, Water Resour. Res. 37, 6, 1681-1694.
  • Ge, Y., and M.C. Boufadel (2006), Solute transport in multiple-reach experiments: Evaluation of parameters and reliability of prediction, J. Hydrol. 323, 1-4, 106-119.
  • Goldstein, S. (1953), On the mathematics of exchange processes in fixed columns. I. Mathematical solutions and asymptotic expansions, Proc. R. Soc. London A 219, 1137, 151-171.
  • Hart, D.R. (1995), Parameter estimation and stochastic interpretation of the transie nt storage model for solute transport in streams, Water Resour. Res. 31, 2, 323-328.
  • Harvey, J.W., B.J. Wagner, and K.E. Bencala (1996), Evaluating the reliability of the stream traces approach to characterize stream-subsurface water exchange, Water Resour. Res. 32, 8, 2441-2451.
  • Hays, J.R., P.A. Krenkel, and K.B. Schnelle (1966), Mass transport mechanisms in open-channel flow, Sanitary and Water Resources Engineering, Dept. Civil Engng., Techn. Rep. 8, Vanderbilt University, Nashville, TE.
  • Runkel, R.L. (1998), One-dimensional transport with inflow and storage (OTIS): A solute transport model of streams and rivers, US Geol. Surv. Water Resour. Invest. Rep. 98-4018.
  • Runkel, R.L., and S.C. Chapra (1993), An efficient numerical solution of the transie nt storage equations for solute transport in small streams, Water Resour. Res. 29, 1, 211-215.
  • Runkel, R.L., and S.C. Chapra (1994), Reply, Water Resour. Res. 30, 10, 2863-2865.
  • Schmid, B.H. (1997), Analytical solution of the transient storage equations accounting for solute decay, Proc. 27th IAHR Congress, Water Resour. Engng. Div., August 10-15, San Francisco, CA, B 15-20.
  • Schmid, B.H. (2003), Temporal moments routing in streams and rivers with transie nt storage, Advances in Water Resour. 26, 9, 1021-1027.
  • Scott, D.T., M.N. Gooseff, K.E. Bencala, and R.L. Runkel (2003), Automated calibration of a stream solute transport model: Implications for interpretation of biogeochemical parameters, J. N. Am. Benthol. Soc. 22, 4, 492-510.
  • Sneddon, I.N. (1972), The Use of Integral Transforms, McGraw-Hill Publ., New Delhi, 539 pp.
  • Thackston, E.L., and K.B. Schnelle (1970), Predicting effects of dead zones on stream mixing, J. Sanit. Eng. Div., Am. Soc. Civ. Eng. 96, SA2, 319-331.
  • Wagner, B.J., and J.W. Harvey (1997), Experimental design for estimating parameters of rate-limited mass transfer: analysis of stream tracer studies, Water Resour. Res. 33, 7, 1731-1741.
  • Wörman, A. (1998), Analytical solution and timescale for transport of reacting solutes in rivers and streams, Water Resour. Res. 34, 10, 2703-2716.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL1-0012-0009
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.