Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We present a new development in fluid theory, incorporating into it the velocity and spin fields; special attention is given to the structure of transport.The theory includes asymmetric molecular stresses and independent rotation velocity, i.e., spin. Our approach is based on our former studies on the asymmetric continuum theory with the balance and constitutive laws for displacement velocity and independent rotation motion, and points out the role of a related characteristic length unit. It is assumed that the vorticity caused by velocities can induce a spin transport counterpart. Thus, under certain conditions, an additional transport term due to rotational velocity fields may be incorporated to the velocity transport, which may lead to the vortex fields included directly into the theory. The Coriolis effect, important for the vortex processes, is considered and it is demonstrated that the motion equations in our asymmetric theory include this effect automatically. When confinining to 2D case, some compatibilities are found between the relations derived for the rotation motions and the moment formed by the Coriolis forces and applied to such motions. This is an important argument supporting our approach. The obtained nonlinear vortex equations (solitons) are derived and discussed for a stationary case.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1056--1071
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
autor
- Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland, rt@igf.edu.pl
Bibliografia
- Cosserat, E., and F. Cosserat (1909), Theorie des Corps Déformables, Librairie Scientifique A. Hermann et Fils, Paris.
- Czernuszenko, W. (1987), Dispersion of pollutants in rivers, Hydrol. Sci. J. 32, 1, 59-67.
- Eringen, A.C. (2001), Microcontinuum Field Theories. II: Fluent Media, Springer, Berlin, 340 pp.
- Eringen, A.C, and E.S. Suhubi (1964), Nonlinear theory of simple micro-elastic solids I, Int. J. Eng. Sci. 2, 2, 189-203.
- Helmholtz, H. (1858), Über Integrale der hydrodynamischen Gleichungen, Welch den Wirbelbewegungen entsprechen, Crelle’s J. 1858, 55, 25-55.
- Kalinowska, M.B., and P.M. Rowiński (2008), Numerical solutions of two-dimensional mass transport equation in flowing surface waters, Publs. Inst. Geophys. Pol. Acad. Sc. E-8, 404, 200 pp.
- Kelvin, L. (1867), The translatory velocity of a circular vortex ring, Phil. Mag. 33, 511-512.
- Mindlin, R.D. (1965), On the equations of elastic materials with microstructure, Int. J. Solid Struct. 1, 1, 73.
- Moore, D.W., and P.G. Saffman (1972), The motion of a vortex filament with Arial flow, Phil. Trans. Roy. Soc. Lond. A 272, 403-429.
- Nowacki, W. (1986), Theory of Asymmetric Elasticity, PWN – Warszawa, Pergamon Press – Oxford, 383 pp.
- Saffman, P.G. (1995), Vortex Dynamics, Cambridge University Press, 311 pp.
- Teisseyre, R. (2005), Asymmetric continuum mechanics: Deviations from elasticity and symmetry, Acta Geophys. Pol. 53, 115-126.
- Teisseyre, R. (2008a), Introduction to asymmetric continuum: Dislocations in solids and extreme phenomena in fluids, Acta Geophys. 56, 2, 259-269.
- Teisseyre, R. (2008b), Asymmetric continuum: Standard theory. In: R. Teisseyre, H. Nagahama, and E. Majewski (eds.), Physics of Asymmetric Continua: Extreme and Fracture Processes, Springer, 95-109.
- Teisseyre, R. (2009), Tutorial on new developments in the physics of rotational motions, Bull. Seism. Soc. Am. 99, 2B, 1028-1039.
- Teisseyre, R., and M. Górski (2008), Introduction to asymmetric continuum: Fundamental point deformations. In: R. Teisseyre, H. Nagahama, and E. Majewski (eds.), Physics of Asymmetric Continua: Extreme and Fracture Processes, Springer, 3-16.
- Teisseyre, R., and M. Górski (2009), Fundamental deformations in asymmetric continuum: Motions and fracturing, Bull. Seism. Soc. Am. 99, 2B, 1132-1136.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL1-0012-0007