PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microseismicity induced during fluid-injection: A case study from the geothermal site at Groß Schönebeck, North German Basin

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The technical feasibility of geothermal power production in a low enthalpy environment will be investigated in the geothermal site at Groß Schönebeck, North German Basin, where a borehole doublet was completed in 2007. In order to complete the Enhanced Geothermal System, three massive hydraulic stimulations were performed. A seismic network was deployed including a single 3-component downhole seismic sensor at only 500 m distance to the injection point. Injection rates reached up to 9 m3/min and the maximum injection well-head pressure was as high as ∼60 MPa. A total of 80 very small (–1.8 < MW < –1.0) induced seismic events were detected. The hypocenters were determined for 29 events. The events show a strong spatial and temporal clustering and a maximum seismicity rate of 22 events per day. Spectral parameters were estimated from the downhole seismometer and related to those from other types of induced seismicity. The majority of events occurred towards the end of stimulation phases indicating a similar behavior as observed at similar treatments in crystalline environments but in our case at a smaller level of seismic activity and at lower magnitudes.
Czasopismo
Rocznik
Strony
995--1020
Opis fizyczny
Bibliogr. 53 poz.
Twórcy
autor
autor
autor
autor
autor
autor
Bibliografia
  • Albright, J.N., and C.F. Pearson (1982), Acoustic emissions as a tool for hydraulic fracture location: Experience at the Fenton Hill hot dry rock site, SPE J. 22, 4, 523-530.
  • Andrews, D.J. (1986), Objective determination of source parameters and similarity of earthquakes of different size. In: S. Das, J. Boatwright, and C.H. Scholz (eds.), Earthquake Source Mechanics, American Geophysical Union, Washington, DC, 259-268.
  • Baisch, S., and H.-P. Harjes (2003), A model for fluid-injection-induced seismicity at the KTB, Germany, Geophys. J. Int. 152, 1, 160-170.
  • Baisch, S., M. Bohnhoff, L. Ceranna, Y. Tu, and H.-P. Harjes (2002), Probing the crust to 9-km depth: Fluid-injection experiments and induced seismicity at the KTB super deep drilling hole, Germany, Bull. Seism. Soc. Am. 92, 6, 2369-2380.
  • Boatwright, J., and J.B. Fletcher (1984), The partition of radiated energy between P and S waves, Bull. Seism. Soc. Am. 74, 2, 361-376.
  • Bohnhoff, M., S. Baisch, and H.-P. Harjes (2004), Fault mechanisms of induced seismicity at the superdeep German Continental Deep Drilling Program (KTB) borehole and their relation to fault structure and stress field, J. Geophys. Res. 109, B02309.
  • Boore, D.M., and J. Boatwright (1984), Average body-wave radiation coefficients, Bull. Seism. Soc. Am. 74, 5, 1615-1621.
  • Bourouis, S., and P. Bernard (2007), Evidence for coupled seismic and aseismic fault slip during water injection in the geothermal site of Soultz (France), and implications for seismogenic transients, Geophys. J. Int. 169, 2, 723-732.
  • Brune, J.N. (1970), Tectonic stress and the spectra of seismic shear waves from earthquakes, J. Geophys. Res. 75, 26; Correction, J. Geophys. Res. 76, (1971), 20, 5002.
  • Charléty, J., N. Cuenot, L. Dorbath, C. Dorbath, H. Haessler, and M. Frogneux (2007), Large earthquakes during hydraulic stimulations at the geothermal site of Soultz-sous-Forêts, Int. J. Rock Mech. Min. Sci. 44, 8, 1091-1105.
  • Cuenot, N., J. Charléty, L. Dorbath, and H. Haessler (2006), Faulting mechanisms and stress regime at the European HDR site of Soultz-sous-Forêts, France, Geothermics 35, 5-6, 561-575.
  • Darnet, M., G. Marquis, and P. Sailhac (2006), Hydraulic stimulation of geothermal reservoirs: fluid flow, electric potential and microseismicity relationships, Geophys. J. Int. 166, 1, 438-444.
  • Di Bona, M., and A. Rovelli (1988), Effects of the bandwidth limitation on stress drops estimated from integrals of the ground motion, Bull. Seism. Soc. Am. 78, 5, 1818-1825.
  • Evans, K.F., H. Moriya, H. Niitsuma, R.H. Jones, W.S. Phillips, A. Genter, J. Sausse, R. Jung, and R. Baria (2005), Microseismicity and permeability enhancement of hydrogeologic structures during massive fluid injections into granite at 3 km depth at the Soultz HDR site, Geophys. J. Int. 160, 388-412.
  • Gibowicz, S.J., and A. Kijko (1994), An Introduction to Mining Seismology, Academic Press, San Diego.
  • Gibowicz, S.J., R.P. Young, S. Talebi, and D.J. Rawlence (1991), Source parameters of seismic events at the Underground Research Laboratory in Manitoba, Canada: Scaling relations for events with moment magnitude smaller than–2, Bull. Seism. Soc. Am. 81, 4, 1157-1182.
  • Hanks, T.C., and H. Kanamori (1979), A moment magnitude scale, J. Geophys. Res. 84, B5, 2348-2350.
  • Hartzell, S.H. (1978), Earthquake aftershocks as Green’s functions, Geophys. Res. Lett. 5, 1, 1-4.
  • Ide, S., and G.C. Beroza (2001), Does apparent stress vary with earthquake size? Geophys. Res. Lett. 28, 17, 3349-3352.
  • Jahr, T., G. Jentzsch, A. Gebauer, and T. Lau (2008), Deformation, seismicity, and fluids: Results of the 2004/2005 water injection experiment at the KTB/Germany, J. Geophys. Res. 113, B11410.
  • Jost, M.L., T. Büsselberg, Ö. Jost, and H.-P. Harjes (1998), Source parameters of injection-induced microearthquakes at 9 km depth at the KTB DEEP Drilling site, Germany, Bull. Seism. Soc. Am. 88, 3, 815-832.
  • Kovach, R.L. (1974), Source mechanisms for Wilmington Oil Field, California, subsidence earthquakes, Bull. Seism. Soc. Am. 64, 3, 699-711.
  • Kümpel, H.-J., J. Erzinger, and S.A. Shapiro (2006), Two massive hydraulic tests completed in deep KTB pilot hole, Scientific Drilling 3, 40-42.
  • Leonard, M., and B.L.N. Kennett (1999), Multi-component autoregressive techniques for the analysis of seismograms, Phys. Earth Planet. Int. 113, 1-4,247-263.
  • Madariaga, R. (1976), Dynamics of an expanding circular fault, Bull. Seism. Soc. Am. 66, 3, 639-666.
  • McGarr, A. (1991), On a possible connection between three major earthquakes in California and oil production, Bull. Seism. Soc. Am. 81, 3, 948-970.
  • McGarr, A. (1999), On relating apparent stress to the stress causing earthquake fault slip, J. Geophys. Res. 104, B2, 3003-3011.
  • Moeck, I., T. Backers, and H. Schandelmeier (2007), Assessment of mechanical wellbore assessment by numerical analysis of fracture growth, EAGE 69th Conference and Exhibition, 11-14 June 2007, Extended abstracts volume,D047, London, UK.
  • Moeck, I., H. Schandelmeier, and H.-G. Holl (2009a), The stress regime in a Rotliegend reservoir of the Northeast German Basin, Int. J. Earth Sci. 98, 7.
  • Moeck, I., G. Kwiatek, and G. Zimmermann (2009b), Slip tendency analysis, fault reactivation potential and induced seismicity in a deep geothermal reservoir, J. Struct. Geol. 31, 10, 1174-1182.
  • Mueller, C.S. (1985), Source pulse enhancement by deconvolution of an empirical Green’s function, Geophys. Res. Lett. 12, 1, 33-36.
  • Nagano, K., H. Moriya, H. Asanuma, M. Sato, H. Niitsuma, and H. Kaieda (1994), Downhole AE measurement of hydraulic fracturing in Ogachi HDR model field, J. Geotherm. Res. Soc. Japan 16, 85-108 (in Japanese).
  • Oye, V., H. Bungum, and M. Roth (2005), Source parameters and scaling relations for mining-related seismicity within the Pyhäsalmi ore mine, Finland, Bull. Seism. Soc. Am. 95, 3, 1011-1026.
  • Phillips, W.S., T.D. Fairbanks, J.T. Rutledge, and D.W. Anderson (1998), Induced microearthquake patterns and oil-producing fracture systems in the Austin chalk, Tectonophysics 289, 1-3, 153-169.
  • Phillips, W.S., J.T. Rutledge, L.S. House, and M.C. Fehler (2002), Induced microearthquake patterns in hydrocarbon and geothermal reservoirs: Six case studies, Pure Appl. Geophys. 159, 1-3, 345-369.
  • Plesǐnger, A., M. Hellweg, and D. Seidl (1986), Interactive high-resolution polarization analysis of broadband seismograms, J. Geophys. 75, 129-139.
  • Raleigh, C.B., J.H. Healy, and J.D. Bredehoeft (1972), Faulting and crustal stress AT Rangely, Colorado. In: H.C. Heard et al. (eds.), Flow and Fracture of Rocks, Geophysical Monograph Series 16, AGU, Washington, D.C., 275-284.
  • Richardson, E., and T.H. Jordan (2002), Seismicity in deep gold mines of South Africa: Implications for tectonic earthquakes, Bull. Seism. Soc. Am. 92, 5, 1766-1782.
  • Shapiro, S.A., J. Kummerow, C. Dinske, G. Asch, E. Rothert, J. Erzinger, H.-J. Kümpel, and R. Kind (2006), Fluid induced seismicity guided by a continental fault: Injection experiment of 2004/2005 at the German Deep Drilling Site (KTB), Geophys. Res. Lett. 33, L01309.
  • Simiyu, S.M. (1999), Induced micro-seismicity during well discharge: OW-719, Olkaria, Kenya rift, Geothermics 28, 6, 785-802.
  • Snoke, J.A. (1987), Stable determination of (Brune) stress drop, Bull. Seism. Soc. Am. 77, 2, 530-538.
  • Tosha, T., M. Sugihara, and Y. Nishi (1998), Revised hypocenter solutions for microearthquakes in the Kakkonda geothermal field, Japan, Geothermics 27, 5-6, 553-571.
  • Trautwein, U., and E .Huenges (2005), Poroelastic behaviour of physical properties in Rotliegend sandstones under uniaxial strain, Int. J. Rock Mech. Min. Sci. 42, 7-8, 924-932.
  • Urbancic, T.I., and R.P. Young (1993), Space-time variations in source parameters of mining-induced seismic events with M < 0, Bull. Seism. Soc. Am. 83, 2, 378-397.
  • Urbancic, T.I., and C.-I. Trifu (1996), Effects of rupture complexity and stress regime on scaling relations of induced microseismic events, Pure Appl. Geophys. 147, 2, 319-343.
  • Waldhauser, F., W.L. Ellsworth, D.P. Schaff, and A. Cole (2004), Streaks, multiplets, and holes: High-resolution spatio-temporal behavior of Parkfield seismicity, Geophys. Res. Lett. 31, L18608.
  • Weber, M., F. Zetsche, T. Ryberg, A. Schulze, E. Spangenberg, and E. Huenges (2005), Seismic detection limits of small, man-made reflectors: A test at a geothermal site in Northern Germany, Bull. Seismol. Soc. Am. 95, 4, 1567-1573.
  • Yokota, T., S. Zhou, M. Mizoue, and I. Nakamura (1981), An automatic measurement of arrival time of seismic waves and its application to an on-line processing system, Bull. Earthq. Res. Inst. Univ. Tokyo 55, 449-484.
  • Zimmermann, G., and A. Reinicke (2010), Hydraulic stimulation of a deep sandstone reservoir to develop an Enhanced Geothermal System: Laboratory and field experiments, Geothermics 39, 1, 70-77.
  • Zimmermann, G., A. Reinicke, W. Brandt, G. Blöcher, H. Milsch, H-G. Holl, I. Moeck, T. Schulte, A. Saadat, and E. Huenges (2008), Results of stimulation treatments at the geothermal research wells in Groß Schönebeck/Germany, Proc. Thirty-Third Workshop on Geothermal Reservoir Engineering, January 28-30, Stanford University, Stanford, CA, SGP-TR-185.
  • Zimmermann, G., T. Tischner, B. Legarth, and E. Huenges (2009), Pressuredependent production efficiency of an Enhanced Geothermal System (EGS): Stimulation results and implications for hydraulic fracture treatments, Pure Appl. Geophys. 166, 5-7, 1089-1106.
  • Zimmermann, G., I. Moeck, and G. Blöcher (2010), Cyclic waterfrac stimulation to develop an enhanced geothermal system (EGS) – Conceptual design and experimental results, Geothermics 39, 1, 59-69.
  • Zoback, M.D., and H.-P. Harjes (1997), Injection-induced earthquakes and crustal stress at 9 km depth at the KTB deep drilling site, Germany, J. Geophys. Res. 102, B8, 18477-18491.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL1-0012-0004
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.