PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Seismotectonic zones demarcation in the Shillong Plateau using the microearthquakes and radon emanation rate

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Shillong Plateau signifies the intense tectonic processes that the region has experienced during the Tertiary Indo-Tibetan and Indo- Burman collisions. An attempt has been made to study the microearthquake and radon emanation rate to understand and identify the seismotectonic zones. The microearthquake data was recorded along a network of seven temporary seismic stations. The epicentral map prepared using the microearthquake data indicates sparse seismic activity over the Shillong Plateau. The alignment of earthquake epicenters does indicate definite pattern of the activity disposition and hence the active fault zones. The calculated b-value over the Shillong Plateau is low which indicates asperity and the fact that the 'stress' is being built-up. Accordingly, along the few identified active crustal structures, time integrated and continuous radon monitoring was made using the LR 115 and Barasol detectors. The sites with anomalous radon concentration are demarcated as active fault zones or sensitive seismotectonic zones and are being monitored continuously using the Barasol detectors. The anomalous radon concentration may not indicate the magnitude of impending earthquake but it certainly can be used to spatially locate the earthquake preparation zones.
Czasopismo
Rocznik
Strony
893--907
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
autor
autor
autor
  • Department of Environmental Studies, North Eastern Hill University, Shillong, India, deveshwa@gmail.com
Bibliografia
  • Bilham, R., and P. England (2001), Plateau ‘pop-up’ during the great 1897 Assam earthquake, Nature 410, 806-809.
  • Chakrabarti, C. (1977), The Dauki Lineament along the southern part of the Meghalaya Plateau, Geol. Survey India, Misc. Publ. 31, 92-93.
  • Dasgupta, A.B., and A.K. Biswas (2000), Geology of Assam, Geological Society of India, Bangalore, India, 170 pp.
  • Dobrovolsky, I.P., S.I. Zubkov, and V.I. Miachkin (1979), Estimation of the size of earthquake preparation zones, Pure Appl. Geophys. 117, 1025-1044.
  • Durrani, S.A., and R. Ilic (eds.) (1997), Radon Measurement by Etched Track Detectors, World Scientific, Singapore, 387 pp.
  • Einarsson, P., P. Theodorsson, A.R. Hjartardottir, and G.I. Gudjonsson (2008), Radon changes associated with the earthquake sequence in June 2000 in the South Iceland seismic zone, Pure Appl. Geophys. 165, 63-74.
  • Evans, P. (1964), The tectonic framework of Assam, J. Geol. Soc. India 5, 80-96.
  • Fleischer, R.L. (1981), Dislocation model for radon response to distant earthquakes, Geophys Res. Lett. 8, 5, 477-480.
  • Gokarn, S.G., G. Gupta, D. Walia, S.S. Sanabam, and N. Hazarika (2008), Deep geoelectric structure over the Lower Brahmaputra valley and Shillong Plateau, NE India using magnetotellurics, Geophys. J. Int. 173, 1, 92-104.
  • Inan, S., T. Akgül, C. Seyis, R. Saatcilar, S. Baykut, S. Ergintav, and M. Bas (2008), Geochemical monitoring in the Marmara region (NW Turkey): A serach for precursors of seismic activity, J. Geophys. Res. 113, B03401.
  • Kuo, T., C. Lin, G. Chang, K. Fan, W. Cheng, and C. Lewis (2009), Estimation of aseismic crustal-strain using radon precursors of the 2003 M6.8, 2006 M6.1, and 2008 M5.0 earthquakes in eastern Taiwan, Nat. Hazards.
  • Le Fort, P. (1975), Himalayas: The collided range, present knowledge of the Continental arc, Am. J. Sci. 275-A, 1-44.
  • Lee, W.H.K., and J.C. Lahr (1975), HYPO-71: A computer program for determining hypocenter, magnitude and first motion pattern of local earthquakes, U.S. Geol. Survey Open File Report (revised ed.)
  • Lee, W.H.K, R.E. Bennett, and K.L. Meagher (1972), A method of estimating magnitude of local earthquakes from signal duration, U.S. Geol. Survey Open File Report.
  • Mogro-Campero, A., and R.L. Fleischer (1978), Search for long-distance migration of subsurface radon, J. Geophys Res., Tech. News Bull. 74, 01-04.
  • Nandy, D.R. (2001), Geodynamics of northeastern India and the adjoining region, ABC Publications, Kolkata, 209 pp.
  • Nikolopoulos, D., E. Vogiannis, A. Louizi, and A. Zisos (2009), Soil radon and electromagnetic anomalies before the Ileia (Greece) M6.8 earthquake, Geophys. Res. Abstr. 11, EGU 2009-3785.
  • Oldham, R.D. (1899), Report on the great earthquake of 12 June 1897, Memoirs Geol. Survey India, Kalkuta, 29, 379 (http://www.archive.org/details/memoirsgeologic02indigoog).
  • Pathak, B., S.M. Syiem, R. Thongney, and B.L. Banik (2000), Microearthquake studies in southern Meghalaya, GSI Report.
  • Pérez, N.M., P.A. Hernández, E. Padrón, G. Melián, R. Marrero, G. Padilla, J. Barrancos, and D. Nolasco (2007), Precursory subsurface 222Rn and 220Rn degassing signatures of the 2004 seismic crisis at Tenerife, Canary Islands, Pure Appl. Geophys. 164, 12, 2431-2448.
  • Utkin, V.I., and A.K. Yurkov (2009), Radon as a “deterministic” indicator of natural and industrial geodynamics processes, Doklady Earth Sciences 427, 1, 833-836.
  • Valdiya, K.S. (1992), The main boundary thrust zone of the Himalaya, India. Ann. Tectonicae 6, Suppl. 54-84.
  • Verma, R.K., and M. Mukhopadhyay (1977), An analysis of the gravity field in Northeastern India, Tectonophysics 42, 283-317.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL1-0009-0030
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.