PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Large-eddy simulation of katabatic winds. Part 1: Comparison with observations

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Steady-state quasi-one-dimensional large-eddy simulations of slope winds over simple terrain are presented. The model results of up-slope flow are compared to previous simulations by Schumann (1990), and good agreement is found. Modelled downslope winds are compared to meteorological observations from two glaciers. The vertical profiles of velocity and buoyancy agree with the observations, whereas larger discrepancies are found between the modelled and the observed momentum and buoyancy flux profiles. Despite some discrepancies, the model captures the main characteristics of the observed downslope winds fairly well. The numerical model is used in a companion paper (Part II) to study how some external input parameters affect katabatic winds.
Słowa kluczowe
Czasopismo
Rocznik
Strony
803--836
Opis fizyczny
Bibliogr. 62 poz.
Twórcy
autor
autor
Bibliografia
  • Arritt, R.W., and R.A. Pielke (1986), Interactions of nocturnal slope flows with ambitne winds, Bound.-Layer Meteor. 37, 1-2, 183-195.
  • Axelsen, S.L., and H. van Dop (2009), Large-eddy simulation of katabatic winds. Part 2: Sensitivity study and comparison with analytical models, Acta Geophys. 57, 4, 837-856.
  • Basu, S., and F. Porté-Agel (2006), Large-eddy simulation of stably stratified atmospheric boundary layer turbulence: A scale-dependent dynamic modeling approach, J. Atmos. Sci. 63, 8, 2074-2091.
  • Beare, R.J., M.K. Macvean, A.A.M. Holtslag, J. Cuxart, I. Esau, J.-C. Golaz, M.A. Jimenez, M. Khairoutdinov, B. Kosovic, D. Lewellen, T.S. Lund, J.K. Lundquist, A. Mccabe, A.F. Moene, Y. Noh, S. Raasch, and P. Sullivan (2006), An intercomparison of large-eddy simulations of the stable Bondary layer, Bound.-Layer Meteor. 118, 2, 247-272.
  • Bromwich, D.H., J.J. Cassano, T. Klein, G. Heinemann, K.M. Hines, K. Steffen, and J.E. Box (2001), Mesoscale modeling of katabatic winds over Greenland with the polar MM5, Monthly Weath. Rev. 129, 9, 2290-2309.
  • Cuijpers, J.W.M. (1990), Subgrid parametrization in a large-eddy simulation model. In: Ninth Symp. on Turbulence and Diffusion, Amer. Meteor. Soc. Roskilde, Denmark, 176-179.
  • Cuijpers, J.W.M. (1994), Large-eddy simulation of cumulus convection, Ph.D. Thesis, IMAU, Utrecht University. Cuijpers, J.W.M., and P.G. Duynkerke (1993), Large eddy simulation of trade wind cumulus clouds, J. Atmos. Sci. 50, 23, 3894-3908.
  • Deardorff, J.W. (1980), Stratocumulus-capped mixed layers derived from a threedimensional model, Bound.-Layer Meteor. 18, 4, 495-527.
  • Delage, Y. (1974), A numerical study of the nocturnal atmospheric boundary layer, Quart. J. Roy. Met. Soc. 100, 351-364.
  • Denby, B. (1999), Second-order modelling of turbulence in katabatic flows, Bound.- Layer Meteor. 92, 1, 65-98.
  • Denby, B., and W. Greuell (1999), The Use of Bulk and Profile Methods Under Conditions of Strong Katabatic Flow, Kluwer Academic Publishers.
  • Doran, J.C., and T.W. Horst (1983), Observations and models of simple nocturnal slope flows, J. Atmos. Sci. 40, 3, 708-717.
  • Dyer, A.J. (1974), A review of flux-profile relationships, Bound.-Layer Meteor. 7, 3, 363-372.
  • Fedorovich, E., and A. Shapiro (2009), Structure of numerically simulated katabatic and anabatic flows along steep slopes, Acta Geophys. 57, 4, 981-1010.
  • Foken, T. (2006), 50 years of the Monin-Obukhov similarity theory, Bound.-Layer Meteor. 119, 3, 431-447.
  • Garratt, J.R. (1992), The Atmospheric Boundary Layer, Cambridge University Press, Cambridge, 316 pp.
  • Geurts, B.J. (2004), Elements of Direct and Large-Eddy Simulation, Edwards, New York.
  • Grachev, A.A., E.L. Andreas, C.W. Fairall, P.S. Guest, and P.O.G. Persson (2007), On the turbulent Prandtl number in the stable atmospheric boundary layer, Bound.-Layer Meteor. 125, 2, 329-341.
  • Grisogono, B., and J. Oerlemans (2001a), Katabatic flow: Analytic solution for gradually varying eddy diffusivities, J. Atmos. Sci. 58, 21, 3349-3354.
  • Grisogono, B., and J. Oerlemans (2001b), A theory for the estimation of surface fluxes in simple katabatic flows, Quart. J. Roy. Met. Soc. 127, 578, 2725-2739.
  • Grisogono, B., L. Kraljević, and A. Jeričević (2007), The low-level katabatic jet height versus Monin-Obukhov height, Quart. J. Roy. Met. Soc. 133, 629, 2133-2136.
  • Haiden, T., and C.D. Whiteman (2005), Katabatic flow mechanisms on a low-angle slope, J. Appl. Meteorol. 44, 1, 113-126.
  • Horst, T.W., and J.C. Doran (1986), Nocturnal drainage flow on simple slopes, Bound.-Layer Meteor. 34, 3, 263-286.
  • Khairoutdinov, M.F., and D.A. Randall (2003), Cloud resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities, J. Atmos. Sci. 60, 4, 607-625.
  • Klein, T., G. Heinemann, D.H. Bromwich, J.J. Cassano, and K.M. Hines (2001), Mesoscale modeling of katabatic winds over Greenland and comparisons with AWS and aircraft data, Meteorol. Atmos. Phys. 78, 1-2, 115-132.
  • Kosović, B., and J.A. Curry (2000), A large eddy simulation study of a quasi-steady, stably stratified atmospheric boundary layer, J. Atmos. Sci. 57, 8, 1052-1068.
  • Lilly, D.K. (1968), Models of cloud-topped mixed layers under a strong inversion, Quart. J. Roy. Met. Soc. 94, 292-309.
  • Mahrt, L. (1982), Momentum balance of gravity flows, J. Atmos. Sci. 39, 12, 2701-2711.
  • Mahrt, L. (1998), Stratified atmospheric boundary layers and break-down of models, Theoret. Comput. Fluid Dyn. 11, 3-4, 263-279.
  • Mahrt, L., and S. Larsen (1990), Relation of slope winds to the ambient flow over gentle terrain, Bound.-Layer Meteor. 53, 1-2, 93-102.
  • Mason, P.J., and S.H. Derbyshire (1990), Large-eddy simulation of the stablystratified atmospheric boundary layer, Bound.-Layer Meteor. 53, 1-2, 117-162.
  • Monti, P., H.J.S. Fernando, M. Princevac, W.C. Chan, T.A. Kowalewski, and E.R. Pardyjak (2002), Observations of flow and turbulence in the nocturnal boundary layer over a slope, J. Atmos. Sci. 59, 17, 2513-2534.
  • Nappo, C.J., and K. Rao (1987), A model study of pure katabatic flows, Tellus 39A, 61-71.
  • Nieuwstadt, F.T.M. (1984), The turbulent structure of the stable nocturnal Bondary layer, J. Atmos. Sci. 41, 14, 2202-2216.
  • Oerlemans, J. (1998), The atmospheric boundary layer over melting glaciers, In: A.A.M. Holtslag, P.G. Duynkerke, and P.J. Jonker (eds.), Clear and Cloudy Boundary Layers, Royal Netherlands Academy of Arts and Sciences, Ch. 6, 129-153.
  • Oerlemans, J., H. Björnsson, M. Kuhn, F. Obleitner, F. Palsson, C.J.P.P. Smeets, H.F. Vugts, and J. De Wolde (1999), Glacio-meteorological investigations on Vatnajökull, Iceland, summer 1996: An overview, Bound.-Layer Meteor. 92, 1, 3-24.
  • Parish, T.R. (1984), A numerical study of strong katabatic winds over Antarctica, Monthly Weath. Rev. 112, 3, 545-554.
  • Parmhed, O., J. Oerlemans, and B. Grisogono (2004), Describing surface fluxes in katabatic flow on Breidamerkurjökull, Iceland, Quart. J. Roy. Met. Soc. 130, 598, 1137-1151.
  • Pettré, P., M.F. Renaud, R. Renaud, M. Déqué, S. Planton, and J.C. André (1990), Study of the influence of katabatic flows on the Antarctic circulation Rusing GCM simulations, Meteorol. Atmos. Phys. 43, 1-4, 187-195.
  • Pope, S.B. (2000), Turbulent Flows, Cambridge University Press, Cambridge, UK.
  • Prandtl, L. (1942), Führer durch die Strömungslehre, Vieweg u. Sohn, Braunschweig. Raasch, S., and D. Etling (1991), Numerical simulation of rotating turbulent thermal convection, Beitr. Phys. Atmos. 64, 3, 185-199.
  • Rao, K.S., and H.F. Snodgrass (1981), A nonstationary nocturnal drainage flow model, Bound.-Layer Meteor. 20, 3, 309-320.
  • Schumann, U. (1990), Large-eddy simulation of the up-slope boundary layer, Quart. J. Roy. Met. Soc. 116, 493, 637-670.
  • Shapiro, A., and E. Fedorovich (2008), Coriolis effects in homogeneous and inhomogeneous katabatic flows, Quart. J. Roy. Met. Soc. 134, 631, 353-370.
  • Skyllingstad, E.D. (2003), Large-eddy simulation of katabatic flows, Bound.-Layer Meteor. 106, 2, 217-243.
  • Smeets, C.J.P.P., P.G. Duynkerke, and H.F. Vugts (1998), Turbulence characteristics of the stable boundary layer over a mid-latitude glacier. Part I: A combination of katabatic and large scale forcing, Bound.-Layer Meteor. 87, 1, 117-145.
  • Smith, C.M., and E.D. Skyllingstad (2005), Numerical simulation of katabatic flow with changing slope angle, Monthly Weath. Rev. 133, 11, 3065-3080.
  • Söderberg, S., and O. Parmhed (2006), Numerical modelling of katabatic flow over a melting outflow glacier, Bound.-Layer Meteor. 120, 3, 509-534.
  • Van den Broeke, M.R. (1997), Momentum, heat, and moisture budgets of the katabatic wind layer over a midlatitude glacier in summer, J. Appl. Meteorol. 36, 6, 763-774.
  • Van der Avoird, E., and P.G. Duynkerke (1999), Turbulence in a katabatic flow. Does it resemble turbulence in stable boundary layers over flat surfaces? Bound.-Layer Meteor. 92, 1, 39-66.
  • Van Dop, H., and S.L. Axelsen (2007), Large eddy simulation of the stable boundary-layer: A retrospect to Nieuwstadt’s early work, Flow Turb. Combust. 79, 3, 235-249.
  • Van Lipzig, N.P.M., E. van Meijgaard, and J. Oerlemans (1999), Evaluation of a regional atmospheric model using measurements of surface heat Exchange processes from a site in Antarctica, Monthly Weath. Rev. 127, 9, 1994-2011.
  • Whiteman, C.D., and S. Zhong (2008), Downslope flows on a low-angle slope and their interactions with valley inversions. Part I: Observations, J. Appl. Meteorol. Clim. 47, 7, 2023-2038.
  • Wicker, L.J., and W.C. Skamarock (2002), Time-splitting methods for elastic models using forward time schemes, Monthly Weath. Rev. 130, 8, 2088-2097.
  • Wyngaard, J.C. (2004), Toward numerical modelling in the “Terra Incognita”, J. Atmos. Sci. 61, 14, 1816-1826.
  • Yamada, T. (1983), Simulations of nocturnal drainage flows by a q2l turbulence closure model, J. Atmos. Sci. 40, 91-106.
  • Zhong, S., and C.D. Whiteman (2008), Downslope flows on a low-angle slope and their interactions with valley inversions. Part II: Numerical modelling, J. Appl. Meteorol. Clim. 47, 7, 2039-2057.
  • Zilitinkevich, S. S., and I.N. Esau (2007), Similarity theory and calculation of turbulent fluxes at the surface for the stably stratified atmospheric Bondary layer, Bound.-Layer Meteor. 125, 193-205.
  • Zilitinkevich, S.S., T. Elperin, N. Kleeorin, and I. Rogachevskii (2007), Energy- and flux-budget (EFB) turbulence closure model for stably stratified flows. Part I: Steady-state, homogeneous regimes, Bound.-Layer Meteor. 125, 2, 167-191.
  • Zilitinkevich, S.S., T. Elperin, N. Kleeorin, I. Rogachevskii, I.N. Esau, T. Mauritsen, and M.W. Miles (2008), Turbulence energetics in stably stratified geophysical flows: Strong and weak mixing regimes, Quart. J. Roy. Met. Soc. 134, 633, 793-799.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL1-0005-0022
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.