PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Designing a ship course controller by applying the adaptive backstepping method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article discusses the problem of designing a proper and efficient adaptive course-keeping control system for a seagoing ship based on the adaptive backstepping method. The proposed controller in the design stage takes into account the dynamic properties of the steering gear and the full nonlinear static maneuvering characteristic. The adjustable parameters of the achieved nonlinear control structure were tuned up by using the genetic algorithm in order to optimize the system performance. A realistic full-scale simulation model of the B-481 type vessel including wave and wind effects was applied to simulate the control algorithm by using time domain analysis.
Rocznik
Strony
985--997
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
autor
  • Faculty of Electrical and Control Engineering, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland, awitkowska@ely.pg.gda.pl
Bibliografia
  • [1] Alfarocid, E., McGookin, E. W., Murray-Smith, D. J. and Fossen, T. I. (2005). Genetic algorithms optimisation of decoupled sliding model controllers simulated and real results, Control Engineering Practice 13(6): 739-748.
  • [2] Almeida, J., Silvestre, C. and Pascoal, A. (2007). Path-following control of fully-actuated surface vessels in the presence of ocean currents, Proceedings of the IFAC Conference on Control Applications in Marine Systems, CAMS, Bol, Croatia, (on CD-ROM).
  • [3] Amerongen, J. (1982). Adaptive Steering of Ships-A Model Reference Approach to Improved Maneuvering and Economical Course Keeping, Ph.D. thesis, Delft University of Technology, Delft.
  • [4] Bibuli, M., Caccia, M. and Lapierre, L. (2007). Path-following control of fully-actuated surface vessels in the presence of ocean currents, Proceedings of the IFAC Conference on Control Applications in Marine Systems, Bol, Croatia, (on CD-ROM).
  • [5] Casado, M. H. and Ferreiro, R. (2005). Identification of the nonlinear ship model parameters based on the turning test trials and the backstepping procedure, Elsevier Ocean Engineering 32(11-12): 1350-1369.
  • [6] Chen, W., Zhou, F., Li, Y. and Song, R. (2008). The ship nonlinear course system control based on auto disturbance rejection controller, Proceedings of the 7thWorld Congress on Intelligent Control and Automation, Chongqing, China, pp. 6454-6458.
  • [7] Do, K. D., Jiang, Z. and Pan, J. (2004). Robust adaptive path following of underactuated ships, Automatica 40(6): 929-944.
  • [8] Du, J. L., Guo, C. Y. and Zhao, S. (2004). Adaptive robust nonlinear design of course keeping ship steering autopilot, 8th Control Automation Robotics and Vision Conference, ICARCV, Kunming, China, Vol. 1, pp. 13-18.
  • [9] Fossen, T. I. and Strand, J. P. (1999). A tutorial on nonlinear backstepping: Applications to ship control, Modelling, Identification and Control 20(2): 83-135.
  • [10] Galbas, J. (1988). Synthesis of Precise Ship Control Using Thrusters, Ph.D. thesis, Gdańsk University of Technology, Gdańsk, (in Polish).
  • [11] Grimble, M., Zhang, Y. and Katebi, M. R. (1993). H-infinity-based ship autopilot design, Ship Control Symposium, Ottawa, Canada, pp. 678-683.
  • [12] Han, J. Q. (2002). From PID technique to active disturbance rejection control technique, Control Engineering of China 9(3): 13-18.
  • [13] Han, Y., Xiao, H., Wang, C. and Zhou, F. (2009). Design and simulation of ship course controller based on auto disturbance rejection control technique, Proceedings of the IEEE International Conference on Automation and Logistics, Shenyang, China, pp. 686-691.
  • [14] Karr, C. L. (1991). Design of an adaptive fuzzy logic controller using a genetic algorithm, International Conference on Genetic Algorithms, ICGA, San Diego, CA, USA, pp. 450-457.
  • [15] Kokotovic, P. and Arcak, M. (2001). Constructive nonlinear control: A historical perspective, Automatica 37(5): 637-662.
  • [16] Krstic, M., Kanellakopulos, I. and Kokotovic, P. V. (1995). Nonlinear and Adaptive Control Design, John Wiley and Sons Ltd., New York, NY.
  • [17] Krstic, M. and Panagiotis, T. (1999). Inverse optimal stabilization of a rigid spacecraft, IEEE Transactions on Automatic Control 44(5): 1042-1043.
  • [18] McGookin, E., Murray-Smith, D., Li, Y. and Fossen, T. I. (2000). Ship steering control system optimisation using genetic algorithms, Control Engineering Practice 8(4): 429-443.
  • [19] Messer, A. and Grimble, M. (1993). Introduction to robust ship track-keeping control design, Transactions of the Institute of Measurement and Control 15(3): 104-110.
  • [20] Pettersen, K. and Nijmeijer, H. (2004). Introduction to robust ship track-keeping control design, Transactions of the Institute of Measurement and Control 20(4): 189-199.
  • [21] Richter, R. and Burns, R. (1993). An artificial neural network autopilot for small vessels, Proceedings of the 1st Conference of the UK Simulation Society, Edinburgh, UK, pp. 168-172.
  • [22] Ruan, J. H. (2006). The design of ship course intelligent controller based on FNN of non-linear system, Journal of Shandong Jiaotong University 14(4): 29-33.
  • [23] Shaocheng, T., Changliang, L. and Yongming, L. (2010). Robust adaptive fuzzy filters output feedback control of strict feedback nonlinear systems, International Journal of Applied Mathematics and Computer Science 20(4): 637-653, DOI: 10.2478/v10006-010-0047-x.
  • [24] Simensen, R. (1995). Simulation of artificial neural networks for ship steering control, Proceedings of the 2nd Conference of the UK Simulation Society, Edinburgh, UK, pp. 65-72.
  • [25] Tomera, M. (2010). Nonlinear controller design of a ship autopilot, International Journal of Applied Mathematics and Computer Science 20(2): 271-280, DOI: 10.2478/v10006-010-0020-8.
  • [26] Velagic, J., Vukic, Z. and Omerdic, E. (2003). Adaptive fuzzy ship autopilot for track-keeping, Control Engineering Practice 11(4): 433-443.
  • [27] Witkowska, A. and Smierzchalski, R. (2009). Nonlinear backstepping ship course controller, International Journal of Automation and Computing 6(3): 277-284.
  • [28] Witkowska, A., Tomera, M. and Śmierzchalski, R. (2007). A backstepping approach to ship course control, International Journal of Applied Mathematics and Computer Science 17(1): 73-85, DOI: 10.2478/v10006-007-0007-2.
  • [29] Zhang, X. K. and Jia, X. L. (2000). Robust PID algorithm based on closed-loop gain shaping and its application on level control, Shipbuilding of China 41(3): 35-39.
  • [30] Zwierzewicz, Z. (2004). On the adaptive ship track-keeping system design via LQR-integral control, Proceedings of the 10th IEEE International Conference on Methods and Models in Automation and Robotics, MMAR, Międzyzdroje, Poland, pp. 207-212.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ7-0008-0016
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.