Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Wireless Backbone Networks (WBNs) equipped with Multi-Radio Multi-Channel (MRMC) configurations do experience power control problems such as the inter-channel and co-channel interference, high energy consumption at multiple queues and unscalable network connectivity. Such network problems can be conveniently modelled using the theory of queue perturbation in the multiple queue systems and also as a weak coupling in a multiple channel wireless network. Consequently, this paper proposes a queue perturbation and weakly coupled based power control approach for WBNs. The ultimate objectives are to increase energy efficiency and the overall network capacity. In order to achieve this objective, a Markov chain model is first presented to describe the behaviour of the steady state probability distribution of the queue energy and buffer states. The singular perturbation parameter is approximated from the coefficients of the Taylor series expansion of the probability distribution. The impact of such queue perturbations on the transmission probability, given some transmission power values, is also analysed. Secondly, the inter-channel interference is modelled as a weakly coupled wireless system. Thirdly, Nash differential games are applied to derive optimal power control signals for each user subject to power constraints at each node. Finally, analytical models and numerical examples show the efficacy of the proposed model in solving power control problems in WBNs.
Rocznik
Tom
Strony
749--764
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
autor
autor
autor
autor
- Council for Scientific and Industrial Research (CSIR), Tshwane University of Technology, Box 395, Pretoria 0001, South Africa, thomas.olwal@gmail.com
Bibliografia
- [1] Adisehu, H. and Parulkar, G. and Varghes, G. (1996). A reliable and scalable striping protocol, IEEE Signal Communication (SIGCOMM) 43(1):123-134.
- [2] Arora, A. and Krunz, M. (2007). Power controlled MAC for ad hoc networks with directional antennas, Elsevier Ad Hoc Networks 5(2): 145-161.
- [3] Avrachenkov, K. E. (1999). Analytic Perturbation Theory and Its Applications, Ph.D. thesis, University of South Australia, Adelaide.
- [4] Bruno, R., Conti, M. and Gregori, E. (2005). Mesh networks: Commodity multi-hop ad hoc networks, IEEE Communications Magazine 43(3): 123-134.
- [5] Chen, L., Zhang, Q., Li, M. and Jia, W. (2007). Joint topology control and routing in IEEE 802.11 based multiradio multichannel mesh networks, IEEE Transactions on Vehicular Technology 56(5): 3123-3136.
- [6] Chydziński, A. and Chróst, L. (2011). Analysis of AQM queues with queue size based packet dropping, International Journal of Applied Mathematics and Computer Science 21(3): 567-577, DOI:10.2478/v10006-011-0045-7.
- [7] Delebecque, F. and Quadrat, J. (1981). Optimal control of Markov chains admitting strong and weak interactions, Automatica 17(2): 281-296.
- [8] El-Azouzi, R. and Altman, E. (2003). A queuing analysis of packet dropping over a wireless link with retransmissions, in M. Conti, S. Giordano, E. Gregori and S. Olariu (Eds.), Personal Wireless Communications, Lecture Notes in Computer Science, Vol. 2775, Springer, Berlin, pp. 321-333.
- [9] Engim Inc. (2004). Multiple Channel 802.11 Chipset, http://www.engim.com/products_en3000.html.
- [10] Gajic, Z. and Shen, X. (1993). Parallel Algorithms for Optimal Control of Large Scale Linear Systems, Springer-Verlag, London.
- [11] Ishmael, J., Bury, S., Pezaros, D. and Race, N. (2008). Rural community wireless networks, IEEE Internet Computing Journal 12(4): 22-29.
- [12] Jittorntrum, K. (1978). An implicit function theorem, Journal of Optimization Theory and Applications 25(4):285-288.
- [13] Klues, K., Xing, G. and C. Lu, C. (2006). A unified architecture for flexible radio power management in wireless sensor networks, Technical Report WUCSE-2006-06, Washington University in St. Louis, MO.
- [14] Li, N. and Hou, J. C. (2004). FLSS: A fault-tolerant topology control algorithm for wireless networks, Proceedings of the IEEE MobiCom Conference, New York, NY, USA. pp. 275-286.
- [15] Li, N. and Hou, J. C. (2005). Localized topology control algorithms for heterogeneous wireless networks, IEEE/ACM Transactions on Networks 13(6): 1-6.
- [16] Mukaidani, H. (2009). Soft-constrained stochastic Nash games for weakly coupled large-scale systems, Automatica 45(1): 1272-1279.
- [17] Olwal, T. O., van Wyk, B. J., Djouani, K., Hamam, Y., Siarry, P. and Ntlatlapa, P. (2009a). Autonomous transmission power adaptation for multi-radio multi-channel wireless mesh networks, Proceedings of the Ad Hoc-Now 2009 Conference, Murcia, Spain, pp. 284-297.
- [18] Olwal, T. O., van Wyk, B. J., Djouani, K., Hamam, Y., Siarry, P and Ntlatlapa, P. (2009b). Interference-aware power control for multi-radio multi-channel wireless mesh networks, Proceedings of the IEEE Africon 2009 Conference, Nairobi, Kenya, pp. 1-6.
- [19] Olwal, T. O., van Wyk, B. J., Djouani, K., Hamam, Y., Siarry, P and Ntlatlapa, P. (2009c). A multiple-state based power control for multi-radio multi-channel wireless mesh networks, World Academy of Science, Engineering and Technology: International Journal of Computer Science 4(1): 53-61.
- [20] Olwal, T. O. (2010). Decentralized Dynamic Power Control for Wireless Backbone Mesh Networks, Ph.D. thesis, University of Paris-Est, Creteil.
- [21] Ramamurthi, V., Reaz, A., Dixit, S., and Mukherjee, B. (2008). Link scheduling and power control in wireless mesh networks with directional antennas, Proceedings of the IEEE Communication Conference 2008, Beijing, China, pp. 4835-4839.
- [22] Sagara, M., Mukaidani, H. and Yamamoto, T. (2008). Efficient numerical computations of soft constrained nash strategy for weakly coupled large-scale systems, Journal of Computers 3(9): 2-10.
- [23] Shen, X. and Gajic, Z. (1990). Optimal reduced solution of the weakly coupled discrete Riccati equation, IEEE Transactions on Automatic Control 35(10): 1160-1162.
- [24] Schweitzer, P. J. (1986). Perturbation series expansions for nearly completely-decomposable Markov chains in O. J. Boxma, J. W. Cohen and H. C. Tijms (Eds.), Teletraffic Analysis and Computer Performance Evaluation, Elsevier Science Publishers, Amsterdam, pp. 319-328.
- [25] Sheth, A. and Han, R. (2005). SHUSH: Reactive transmit power control for wireless MAC Protocols, Proceedings of the 1st IEEE International Conference on the Wireless Internet (WICON), Budapest, Hungary, pp. 18-25.
- [26] Sorooshyari, S. and Gajic, Z. (2008). Autonomous dynamic power control for wireless networks: User-centric and network-centric consideration, IEEE Transactions on Wireless Communication 7(3): 1004-1015.
- [27] Tseng, Y.-C., Wu, S.-L., Lin, C.-Y and Shen, J.-P. (2001). A multi-channel MAC protocol with power control for multihop ad hoc networks, Proceedings of the Distributed Computing Systems Workshop, Boston, MA, USA, pp. 419-424.
- [28] Wang, K., Chiasserini, C. F., Proakis, J. G. and Rao, R. R. (2006). Joint scheduling and power control supporting multicasting in wireless ad hoc networks, Elsevier Ad Hoc Networks 4: 532-546.
- [29] Zhu, H., Lu, K and Li, M. (2008). Distributed topology control in multi-channel multi-radio mesh networks, Proceedings of the IEEE International Communication Conference, Beijing, China, pp. 2958-2962.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ7-0007-0019