PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of water glass modification on its viscosity and wettability of quartz grains

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the present study was to develop a modifier for water glass. The method of thermal generation of metal oxide nanoparticles was adapted and used in the research. Nanoparticles of ZnO from the thermal decomposition of basic zinc carbonate were used. A method for the modifier introduction was developed, and the effect of modifier content and organic solvent type on the physico-chemical properties of binder (viscosity) and quartz wettability was determined. Binder viscosity was examined from the flow curves plotted with the help of a RHEOTEST 2 rotational rheometer equipped with proper software. Quartz wettability was determined examining time-related changes in the value of the contact angle in a quartz-binder system, until full stabilisation of the angle value has been achieved. Binder modification was carried out on sodium water glass designated as R"145". The water glass modifiers were suspensions of ZnO nanoparticles in propanol and methanol at a fixed concentration of c = 0.3 M and with the size of nanoparticles comprised in a range of <61 - 981 nm>. Water glass modification with the suspensions of ZnO nanoparticles in methanol and propanol showed the effect of modifier on the water glass viscosity and quartz wettability. This effect depends on the type of alcohol used. The ZnO suspension in propanol (alcohol with a longer hydrocarbon chain) affects more strongly the viscosity of binder and quartz wettability than the methanol suspension.
Rocznik
Strony
59--62
Opis fizyczny
Bibliogr. 16 poz., wykr.
Twórcy
autor
autor
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Cracow, Poland, akmita@agh.edu.pl
Bibliografia
  • [1] Kmita, A., Hutera, B. & Drożyński, D. (2010). Effect of sodium silicate modification on selected properties of loose self-setting sands. Archives of Foundry Engineering, vol. 10 issue 4, pp. 93-96.
  • [2] Hutera, B., Stypuła, B., Kmita, A. & Nowicki, P. (2011). Modification of water glass with colloidal slurries of metal oxides. Archives of Foundry Engineering, vol. 11, issue 4, pp. 51-54.
  • [3] Avella, M., Bondioli, F., Cannillo, V., Errico, M. E., Ferrari, A. M., Focher, B., Malinconico, Manfredini, M. T. & Montorsi, M. (2004). Preparation, characterisation and computational study of poly(\epsilon-caprolactone) based nanocomposites. Materials Science and Technology, vol. 20, pp.1340 - 1344. DOI:10.1179 /0267 08304225022278.
  • [4] Chaisan, W., Yimnirun, R. & Ananta, S. (2008). Preparation and characterization of ceramic nanocomposiets in the PZT-BT system. Ceramic International, pp. 1-4. DOI: 10.1016 /j.ceramint. 2008.10.032.
  • [5] Wang, H., Bai, Y., Liu, S., Wu, J. & Wong, C. P. (2002). Combined effects of silica filler and its interface in epoxy resin. Acta Materialia, 50, pp. 4396-4377. DOI: 10.1016/S1359-6454(02)00275-6.
  • [6] Odegard, G. M., Clancy, T. C. & Gates, T. S. (2005). Modelling of the mechanical properties of nanoparticle/polimer composites. Polymer, 46, pp. 553-562. DOI:10.1016/S0266-3538(03)00115-5.
  • [7] Wentzel, B., Haupetr, F. & QiuZhang, M. (2003). Epoxy nanocomposites with high mechanical tribological performance. Composites Science and Technology, 63, pp. 2055-2067.
  • [8] Kacperski, M. (2004). Wstępne badania nad wpływem rodzaju modyfikatora na właściwości nanokompozytów epoksydowych. Kompozyty, 4, vol. 9, pp. 28-32.
  • [9] Ji-na, W., Zi-tian, F., Hua-feng, W., Xuan-pu, D. H. & Nai-yu. (2007). An improved sodium silicate binder modified by ultra-fine powder materials. China Foundry, vol. 4. No. 1, pp. 26-30, DOI: 1672-6421(2007)01-026-05.
  • [10] Darezereshki, E., Alizadeh, M., Bakhtiari, F., Schaffie, M. & Ranjbar, M. (2011). A novel thermal decomposition method for the synthesis of ZnO nanoparticles from low concentration ZnSO4 solutions. Applied Clay Science, 54, pp. 107-111. DOI: 10.1016/j.clay.2011.07.023.
  • [11] Fan, H., Song, B., Liu, J., Yang, Z. & Li, Q. (2005). Thermal formation mechanism and size control of spherical hematite nanoparticles. Materials Chemistry and Physics, 89, pp. 321-325.DOI: 10.1016/j.matchemphys.2004.09.021.
  • [12] Jajarmi, P. (2009). Fabrication of pure ZnO nanoparticles by polymerization metod. Materials Letters, 63, pp. 2646-2648. DOI: 10.1016/j.matlet.2009.08.062.
  • [13] Reverchona, E., Della Portaa, G. & Torinoa, E. (2010). Production of metal oxide nanoparticles by supercritical emulsion reaction. J. of Supercritical Fluids, 53, pp. 95-101. DOI: 10.1016/j.supflu.2009.11.007.
  • [14] Wu, R., Xie, C., Xia, H. J., Hu, Wang, A. (2000). The thermal physical formation of ZnO nanoparticles and their morphology. Journal of Crystal Growth, 217, pp. 274-280.
  • [15] Chun-xi, Z. (2007). Recent advances in waterglass sand technologies. China Foundry, vol. 4, No. 1, pp. 13-17 DOI: 1672-6421(2007)01-013-05.
  • [16] Hutera, B. (2008). Znaczenie rocieńczalnika w spoiwie dla przebiegu zjawisk powierzchniowych w układzie osnowa piaskowa-materiał wiążący. Kraków: Wydawnictwo Naukowe AKAPIT.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ7-0006-0011
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.