PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modification of non-metallic inclusions by rare-earth elements in microalloyed steels

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The modification of the chemical composition of non-metallic inclusions by rare-earth elements in the new-developed microalloyed steels was discussed in the paper. The investigated steels are assigned to production of forged elements by thermomechanical treatment. The steels were melted in a vaccum induction furnace and modification of non-metallic inclusions was carried out by the michmetal in the amount of 2.0 g per 1 kg of steel. It was found that using material charge of high purity and a realization of metallurgical process in vacuous conditions result in a low concentration of sulfur (0.004%), phosphorus (from 0.006 to 0.008%) and oxygen (6 ppm). The high metallurgical purity is confirmed by a small fraction of non-metallic inclusions averaging 0.075%. A large majority of non-metallic inclusions are fine, globular oxide-sulfide or sulfide particles with a mean size 17 m2. The chemical composition and morphology of non-metallic inclusions was modified by Ce, La and Nd, what results a small deformability of nonmetallic inclusions during hot-working.
Rocznik
Strony
129--134
Opis fizyczny
Bibliogr. 19 poz., rys., tab., wykr.
Twórcy
autor
autor
  • Division of Constructional and Special Materials, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland, marek.opiela@polsl.pl
Bibliografia
  • [1] Wypartowicz J., Podorska D. (2006). Control of chemical composition of oxide-sulfide inclusions during deoxidation of steel with manganese, silicon and titanium. Metallurgy - Metallurgical Engineering News. 3, 91-96 (in Polish).
  • [2] Oikawa K., Ishida K., Nishizawa T. (1997). Effect of titanium addition on the formation and distribution of MnS inclusions in steel during solidification. ISIJ International. 37, 332-338.
  • [3] Ishikawa F., Takahasi T., Ochi T. (1994). Intergranular ferrite nucleation in medium-carbon vanadium steels. Met. Materials Transaction A. 25A, 926-936.
  • [4] Gladman T. (1997). The Physical Metallurgy of Microalloyed Steels, University Press Cambridge.
  • [5] Adamczyk J. (2004). Engineering of Metallic Materials. The Silesian University of Technology Publishers. Gliwice (in Polish).
  • [6] Kiessling R. (1997). Lange N. Non metallic inclusions in steel. The Institute of Materials, London.
  • [7] Lis T., Nowacki K., Kania H. (2001). Improvement of steel purity by ladle metallurgy. Metallurgy - Metallurgical Engineering News. 10, 356-361 (in Polish).
  • [8] Bolanowski K. (2004). Effect of rare-earth elements addition on structure and properties of steel. Metallurgy - Metallurgical Engineering News. 7-8, 323-325 (in Polish).
  • [9] Grajcar A. (2010). Modification of non-metallic inclusions by rare-earth elements in low-alloyed C-Mn-Si-Al type steels. Ores and Non-Ferrous Metals. 3, 143-152 (in Polish).
  • [10] Grajcar A., Galisz U., Bulkowski L. (2011). Modification of non-metallic inclusions by rare-earth elements in high-manganese austenitic C-Mn-Si-Al type steels. Metallurgy - Metallurgical Engineering News. 2, 178-187 (in Polish).
  • [11] Garbarz B., Żak A., Wojtas J., Molenda R. (1999). The effect of fine particles of nonmetallic inclusions of the austenite grain growth in microalloyed steels. Material Engineering. 1, 5-12 (in Polish).
  • [12] Garbarz B. (1995). The effect of some continuous casting parameters and microalloying elements on the effectiveness of controlling of austenite grain size. Journal of Materials Processing Technology. 53, 147-158.
  • [13] Garbarz B., Marcisz J., Wojtas J. (2003). TEM analysis of fine sulfides dissolution and precipitation in steel. Materials Chemistry and Physics. 81, 486-489.
  • [14] H. Kejian, T. N. Baker (1992). Copper containing sulfide phases present in controlled rolled niobium-titanium bearing high strength low alloy steels, Materials Science and Technology, 8 1082-1089.
  • [15] Shim J., Oh Y., Suh J., Cho Y., Byun J., Lee D. (2001). Ferrite nucleation potency of non-metallic inclusions in medium carbon steels. Acta Materiala. 49, 2115-2122.
  • [16] Shim J., Cho Y., Chung S., Lee D. (1999). Nucleation of intergranular ferrite at Ti2O3 particle in low carbon steel. Acta Materiala. 47, 2751-2760.
  • [17] Vainola R. V., Holappa L. E., Karvonen P. H. (1995). Modern steelmaking technology for special steels. Journal of Materials Processing Technology. 53, 453-465.
  • [18] Wolańska N., Lis A. K., Lis J. (2007). Investigation of C-Mn-B steel after hot deformation. Archives of Materials Science and Engineering. 28, 119-125.
  • [19] Wolańska N., Lis A. K., Lis J. (2007). Microstructure investigation of low carbon steel after hot deformation. Journal of Achievements in Materials and Manufacturing Engineering. 20 (1-2), 291-294.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ7-0005-0050
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.