Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The mathematical model of the globular eutectic solidification in 2D was designed. Proposed model is based on the Cellular Automaton Finite Differences (CA-FD) calculation method. Model has been used for studies of the primary austenite and of globular eutectic grains growth during the solidification of the ductile iron with different carbon equivalent in the thin wall casting. Model takes into account, among other things, non-uniform temperature distribution in the casting wall cross-section, kinetics of the austenite and graphite grains nucleation, and non-equilibrium nature of the interphase boundary migration. Solidification of the DI with different carbon equivalents was analyzed. Obtained results were compared with the solidification path calculated by CALPHAD method.
Czasopismo
Rocznik
Tom
Strony
13--18
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
autor
autor
autor
autor
autor
- Faculty of Foundry Engineering, AGH University of Science and Technology, Reymonta 23, 30-059 Krakow, Poland, abur@agh.edu.pl
Bibliografia
- [1] D. M. Stefanescu, A. Catalina, X. Guo, L. Chuzhoy, M. A. Pershing and G. L. Biltgen: Prediction of room temperature mcrostructure and mechanical properties in iron castings, MCWASP, edited by B. G. Thomas, C. Beckermann, TMS, Warrendale (1998), p. 455-462.
- [2] S. M. Yoo, A. Ludwig and P. R. Sahm: Numerical simulation of solidification of nodular cast iron in permanent molds, in Solidification Processing, edited by J. Beech, H. Jones / Ranmoor House, Univ. of Sheffield (1997), p. 494-497.
- [3] S. Chang, D. Shangguan and D. Stefanescu: Modeling of the liquid/solid and the eutectoid phase transformations in spheroidal graphite cast iron, Metal. Trans. A, Vol. 23A (1992), p. 1333-1346.
- [4] T. Skaland, O. Grong and T. Grong: A model for the graphite formation in ductile cast iron. II. Solid state transformation reactions, Metal. Trans. A, Vol. 24A (1993), p. 2347-2353.
- [5] M. Onsoien, O. Grong, O. Gundersen and T. Skaland: A process model for the microstructure evolution in ductile cast iron. I. The model, Metal. Mat. Trans. A, Vol. 30A (1999), p. 1053-1068.
- [6] E. Fraś and M. Górny: Thin wall ductile and austempered iron castings as substitutes for aluminium alloy castings, Foundry Trade Journal Int., Vol. 185, No. 3683 (2011), p. 85-90.
- [7] C. Labrecque and M. Gagne: Production of thin-wall ductile iron castings, Int. Journal of Cast Metals Res., Vol. 16 (2003), p. 313-318.
- [8] D. M. Stefanescu, R. E. Ruxanda and L. P. Dix: The metllurgy and tensile mechanical properties of thin wall spheroidal graphite irons, Int. Journal of Cast Metals Res., Vol. 16 (2003), p. 319-324.
- [9] H. Rafii-Tabar, A. Chirazi: Multiscale computational modelling of solidification phenomena, Physics Reports-Re-view Section of Phys. Lett., Vol. 365 (2002), p. 145-249.
- [10] P. D. Lee, A. Chirazi, R. C. Atwood and W. Wang: Multi-scale modelling of solidification microstructures, including microsegregation and microporosity, in an Al-Si-Cu alloy, Mat. Sci. Eng. A, Vol. 365 (2004), p. 57-65.
- [11] A. R. Umantsev, V. V. Vinogradov and V. T. Borisov: Mathematical modeling of the dendrite growth during the solidification from undercooled melt, Kristallografia, Vol. 30 (1985), p. 455-460 (in Russian).
- [12] M. Rappaz, Ch. A. Gandin: Probabilistic Modelling of Microstructure Formation in Solidification Processes, Acta Metallurgica et Materialia, Vol. 41 (1993), p. 345-360.
- [13] S. Pan, M. Zhu: A three-dimensional sharp interface model for the quantitative simulation of solutal dendritic growth, Acta Materialia, Vol. 58 (2010), p. 340-352.
- [14] G. Guillemot, Ch. A. Gandin and M. Bellet: Interaction between single grain solidification and macrosegregation: Application of a cellular automaton-finite element model, Journal of Crystal Growth, Vol. 303 (2007), p. 58-68.
- [15] L. Beltran-Sanchez, D. M. Stefanescu: A quantitative dendrite growth model and analysis of stability concepts, Metall. Mat. Trans. A, Vol. 35 (2004), p. 2471-2485.
- [16] V. Pavlyk, U. Dilthey: Simulation of weld solidification microstructure and its coupling to the macroscopic heat and fluid flow modelling, Modelling and Simulation in Materials Science and Engineering, Vol. 12 (2004), p. 33-45.
- [17] M. F. Zhu, C. P. Hong: A three dimensional modified cellular automaton model for the prediction of solidification micro-structures, ISIJ International, Vol. 42 (2002), p. 520-526.
- [18] D. J. Jarvis, S. G. R. Brown and J. A. Spittle: Modelling of non-equilibrium solidification in ternary alloys: comparison of 1D, 2D, and 3D cellular automaton-finite difference simulations, Mat. Sci. Techn., Vol. 16 (2000), p. 1420-1424.
- [19] A. A. Burbelko, E. Fraś, W. Kapturkiewicz and D. Gurgul: Modelling of dendritic growth during unidirectional solidification by the method of cellular automata, Mat. Sci. Forum, Vol. 649 (2010), 217-222.
- [20] A. A. Burbelko, E. Fraś, W. Kapturkiewicz and E. Olejnik: Nonequilibrium kinetics of phase boundary movement in cellular automaton modelling, Mat. Sci. Forum, Vol. 508 (2006), p. 405-410.
- [21] H. L. Zhao, M. F. Zhu, D. M. Stefanescu: Modeling of the divorced eutectic solidification of spheroidal graphite cast iron, Key Eng. Materials, Vol. 457 (2011), p. 324-329.
- [22] W. Kapturkiewicz, A. A. Burbelko, E. Fraś, M. Górny, D. Gurugl: Computer modelling of ductile iron solidification using FDM and CA methods, Journal of Achievments in Materials and Manufacturing Engineering, Vol. 43, Iss. 1 (2010), p. 310-323.
- [23] Ch.-A. Gandin, M. Rappaz: A coupled finite element-cellular automaton model for the prediction of dendritic grain structures in solidification processes, Acta Metall. Mater., Vol. 42(7) (1994), p. 2233-2246.
- [24] E. Fraś, K. Wiencek, A. A. Burbelko, M. Górny: The application of some probability density function of heterogeneous nucleation, Materials Science Forum, Vol. 508, (2006), p. 425-430.
- [25] A. Burbelko, E. Fraś, D. Gurgul, W. Kapturkiewicz, J. Sikora: Simulation of the ductile iron solidification using a cellular automaton, Key Engineering Materials, Vol. 457 (2011), p. 330-336.
- [26] J. Hoyt, M. Asta: Atomistic computation of liquid diffusivity, solid-liquid interfacial free energy, and kinetic coefficient in Au and Ag, Phys. Rev. B., 65, art. No. 214106 (2002), p. 1-11.
- [27] A. A. Burbelko, W. Kapturkiewicz, D. Gurgul: Analysis of causes and means to reduce artificial anisotropy in modelling of the solidification process on cellular automaton, Solidification Processing: Proceedings of the 5th Decennial International Conference on Solidification Processing. H. Jones eds., The University of Sheffield, UK, 2007, p. 31-35.
- [28] U. Dilthley, V. Pavlik: Numerical simulation of dendrite morphology and grain growth with modified cellular automata, Modeling of Casting, Welding and Advanced Solidification Processes VIII, B.G. Thomas and C. Beckermann eds., TMS, Warrendale, 1998, p. 589-596.
- [29] A. Burbelko, D. Gurgul: Modeling of primary and eutectic solidification by using CAFD method. in: Computer Methods in Materials Science, Vol. 11, No. 1 (2011), p. 128-134.
- [30] D. Gurgul, A. A. Burbelko: Simulation of austenite and graphite growth in ductile iron by means of cellular automata. Archives of Metallurgy and Materials. Vol. 55, Iss. 1 (2010), p. 53-60.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ7-0004-0003