Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Asymptotic stability of models of 2D continuous-discrete linear systems is considered. Computer methods for investigation of the asymptotic stability of the Roesser type model are given. The methods require computation of eigenvalue-loci of complex matrices or evaluation of complex functions. The effectiveness of the stability tests is demonstrated on numerical examples.
Rocznik
Tom
Strony
401--408
Opis fizyczny
Bibliogr. 28 poz., wykr.
Twórcy
autor
autor
- Faculty of Electrical Engineering Białystok University of Technology, ul. Wiejska 45D, 15-351 Białystok, Poland, busmiko@pb.edu.pl
Bibliografia
- [1] Bistritz, Y. (2003). A stability test for continuous-discrete bivariate polynomials, Proceedings of the 2003 IEEE International Symposium on Circuits and Systems, Bangkok, Thailand, Vol. 3, pp. 682-685.
- [2] Bistritz, Y. (2004). Immittance and telepolation-based procedures to test stability of continuous-discrete bivariate polynomials, Proceedings of the 2004 IEEE International Symposium on Circuits and Systems, Vancouver, Canada, Vol. 3, pp. 293-296.
- [3] Busłowicz, M. (1997). Stability of Linear Time-invariant Systems with Uncertain Parameters, Technical University of Białystok, Białystok, (in Polish).
- [4] Busłowicz, M. (2010a). Robust stability of the new general 2D model of a class of continuous-discrete linear systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 57(4): 561-565.
- [5] Busłowicz, M. (2010b). Stability and robust stability conditions for general model of scalar continuous-discrete linear systems, Pomiary, Automatyka, Kontrola 56(2): 133-135.
- [6] Busłowicz, M. (2011a). Computational methods for investigation of stability of models of 2D continuous-discrete linear systems, Journal of Automation, Mobile Robotics and Intelligent Systems 5(1): 3-7.
- [7] Busłowicz, M. (2011b). Improved stability and robust stability conditions for general model of scalar continuous-discrete linear systems, Pomiary, Automatyka, Kontrola 57(2): 188-189.
- [8] Busłowicz, M. and Ruszewski, A. (2011). Stability investigation of continuous-discrete linear systems, Pomiary, Automatyka, Robotyka 2(2): 566-575, (on CD-ROM, in Polish).
- [9] Dymkov, M. (2005). Extremal Problems in Multiparameter Control Systems, BGEU Press, Minsk, (in Russian).
- [10] Dymkov, M., Gaishun, I., Rogers, E., Gałkowski, K. and Owens, D. H. (2004). Control theory for a class of 2D continuous-discrete linear systems, International Journal of Control 77(9): 847-860.
- [11] Dymkov M., Rogers E., Dymkou S., Gałkowski, K. and Owens D. H. (2003). Delay system approach to linear differential repetitive processes, Proceedings of the IFAC Workshop on Time-Delay Systems (TDS 2003), Rocquencourt, France, (CD-ROM).
- [12] Gałkowski, K., Rogers, E., Paszke, W. and Owens, D. H. (2003). Linear repetitive process control theory applied to a physical example, International Journal of Applied Mathematics and Computer Science 13(1): 87-99.
- [13] Guiver, J. P. and Bose, N. K. (1981). On test for zero-sets of multivariate polynomials in noncompact polynomials, Proceedings of the IEEE 69(4): 467-469.
- [14] Hespanha, J. (2004). Stochastic hybrid systems: Application to communication networks, Technical report, Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA.
- [15] Johanson, K., Lygeros, J. and Sastry, S. (2004). Modelling hybrid systems, in H. Unbehauen (Ed.), Encyclopedia of Life Support Systems, EOLSS, Berlin.
- [16] Kaczorek, T. (1998). Vectors and Matrices in Automatics and Electrotechnics, WNT, Warsaw, p. 70, (in Polish).
- [17] Kaczorek, T. (2002). Positive 1D and 2D Systems, Springer-Verlag, London.
- [18] Kaczorek, T. (2007). Positive 2D hybrid linear systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 55(4): 351-358.
- [19] Kaczorek, T. (2008a). Positive fractional 2D hybrid linear systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 56(3): 273-277.
- [20] Kaczorek, T. (2008b). Realization problem for positive 2D hybrid systems, International Journal for Computation and Mathematics in Electrical and Electronic Engineering, COMPEL 27(3): 613-623.
- [21] Kaczorek, T. (2011). Selected Problems of Fractional Systems Theory, Lecture Notes in Control and Information Sciences, Vol. 411, Springer-Verlag, Berlin.
- [22] Kaczorek, T., Marchenko, V. and Sajewski, Ł. (2008). Solvability of 2D hybrid linear systems-Comparison of the different methods, Acta Mechanica et Automatica 2(2): 59-66.
- [23] Keel, L. H. and Bhattacharyya, S. P. (2000). A generalization of Mikhailov's criterion with applications, Proceedings of the American Control Conference, Chicago, IL, USA, Vol. 6, pp. 4311-4315.
- [24] Liberzon, D. (2003). Switching in Systems and Control, Birkhauser, Boston, MA.
- [25] Sajewski, Ł. (2009). Solution of 2D singular hybrid linear systems, Kybernetes 38(7/8): 1079-1092.
- [26] Marchenko V. M. and Loiseau J. J. (2009). On the stability of hybrid difference-differential systems, Differential Equation 45(5), 743-756.
- [27] Rogers, E., Gałkowski, K. and Owens, D. H. (2007). Control Systems Theory and Applications for Linear Repetitive Processes, Lecture Notes in Control and Information Sciences, Vol. 349, Springer-Verlag, Berlin.
- [28] Xiao, Y. (2001). Stability test for 2-D continuous-discrete systems. Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, FL, USA, Vol. 4, pp. 3649-3654.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ7-0001-0030