PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sliding mode methods for fault detection and fault tolerant control with application to aerospace systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Sliding mode methods have been historically studied because of their strong robustness properties with regard to a certain class of uncertainty, achieved by employing nonlinear control/injection signals to force the system trajectories to attain in finite time a motion along a surface in the state-space. This paper will consider how these ideas can be exploited for fault detection (specifically fault signal estimation) and subsequently fault tolerant control. It will also describe applications of these ideas to aerospace systems, including piloted flight simulator results associated with the GARTEUR AG16 Action Group on Fault Tolerant Control. The results demonstrate a successful real-time implementation of the proposed fault tolerant control scheme on a motion flight simulator configured to represent the post-failure EL-AL aircraft.
Rocznik
Strony
109--124
Opis fizyczny
Bibliogr. 50 poz., rys., wykr.
Twórcy
autor
autor
autor
  • Department of Engineering University of Leicester, University Road, Leicester, LE1 7RH, UK, ce14@le.ac.uk
Bibliografia
  • [1] Alwi, H. and Edwards, C. (2008a). Fault detection and fault tolerant control of a civil aircraft using a sliding-mode-based scheme, IEEE Transactions on Control Systems Technology 16(3): 499-510.
  • [2] Alwi, H. and Edwards, C. (2008b). Fault tolerant control using sliding modes with on-line control allocation, Automatica 44(7): 1859-1866.
  • [3] Alwi, H., Edwards, C., Stroosma, O. and Mulder, J. A. (2008). Fault tolerant sliding mode control design with piloted simulator evaluation, AIAA Journal of Guidance, Control and Dynamics 31(5): 1186-1201.
  • [4] Alwi, H., Edwards, C., Stroosma, O. and Mulder, J. A. (2010). Evaluation of a sliding mode fault tolerant controller for the EL-AL incident, AIAA Journal of Guidance, Control and Dynamics 33(3): 667-677.
  • [5] Alwi, H., Edwards, C. and Tan, C. (2009a). Sliding mode estimation schemes for incipient sensor faults, Automatica 45(7): 1679-1685.
  • [6] Banda, S. (1999). Special issue editorial, International Journal of Robust and Nonlinear Control 9(14): 997-998.
  • [7] Bejarano, F., Fridman, L. and Poznyak, A. (2007). Hierarchical observer for strongly detectable systems via second order sliding mode, Proceedings of the IEEE CDC'07, New Orleans, LA, USA, pp. 3709-3713.
  • [8] Blanke, M., Kinnaert, M., Lunze, J. and Staroswiecki, M. (2006). Diagnosis and Fault-Tolerant Control, 2nd Edn., Springer, Berlin/Heidelberg.
  • [9] Bošković, J. D. and Mehra, R. K. (2002). Control allocation in overactuated aircraft under position and rate limiting, Proceedings of the American Control Conference, Anchorage, AL, USA, pp. 791-796.
  • [10] Boyd, S., Ghaoui, L.E., Feron, E. and Balakrishnan, V. (1994). Linear Matrix Inequalities in Systems and Control Theory, SIAM, Philadelphia, PA.
  • [11] Buffington, J., Chandler, P. and Pachter, M. (1999). On-line system identification for aircraft with distributed control effectors, International Journal of Robust and Nonlinear Control 9(14): 1033-1049.
  • [12] Chen, J. and Patton, R. J. (1999). Robust Model-Based Fault Diagnosis for Dynamic Systems, Kluwer Academic Publishers, Boston, MA.
  • [13] Chen, J., Patton, R. and Zhang, H. (1996). Design of unknown input observers and robust fault detection filters, International Journal of Control 63(1): 85-105.
  • [14] Chen, J. and Zhang, H. (1991). Robust detection of faulty actuators via unknown input observers, International Journal of Systems Science 22(10): 1829-1839.
  • [15] Chen,W. and Saif, M. (2007). Actuator fault diagnosis for uncertain linear systems using a high-order sliding-mode robust differentiator, International Journal of Robust and Nonlinear Control 18(4-5): 413-426.
  • [16] Darouach, M. (1994). On the novel approach to the design of unknown input observers, IEEE Transactions on Automatic Control 39(3): 698-699.
  • [17] Davidson, J. B., Lallman, F. J. and Bundick, W. T. (2001). Real time adaptive control allocation applied to a high performance aircraft, 5th SIAM Conference on Control & Its Application, San Diego, CA, USA, pp. 1-11.
  • [18] Dávila, A., Moreno, J. A. and Fridman, L. (2010). Variable gains super-twisting algorithm: A Lyapunov based design, IEEE American Control Conference, Baltimore, MD, USA, pp. 968-973.
  • [19] Draženović, B. (1969). The invariance conditions in variable structure systems, Automatica 5(3): 287-295.
  • [20] Edelmayer, A., Bokor, J., Szabó, Z. and Szigeti, F. (2004). Input reconstruction by means of system inversion: A geometric approach to fault detection and isolation in nonlinear systems, International Journal of Applied Mathematics and Computer Science 14(2): 189-199.
  • [21] Edwards, C., Lombaerts, T. and Smaili, H. (Eds.) (2010). Fault Tolerant Flight Control: A Benchmark Challenge, Lecture Notes in Control and Information Sciences, Vol. 399, Springer-Verlag, Berlin/Heidelberg.
  • [22] Edwards, C. and Spurgeon, S. (1994). On the development of discontinuous observers, International Journal of Control 59(4): 1211-1229.
  • [23] Edwards, C. and Spurgeon, S. K. (1998). Sliding Mode Control: Theory and Applications, Taylor & Francis, London.
  • [24] Edwards, C. and Spurgeon, S. K. (2000). A sliding mode control observer based FDI scheme for the ship benchmark, European Journal of Control 6(4): 341-356.
  • [25] Edwards, C., Spurgeon, S. and Patton, R. (2000). Sliding mode observers for fault detection, Automatica 36(4): 541-553.
  • [26] Edwards, C. and Tan, C. P. (2006). A comparison of sliding mode and unknown input observers for fault reconstruction, European Journal of Control 12(3): 245-260.
  • [27] Enns, D. (1998). Control allocation approaches, AIAA Guidance, Navigation and Control Conference and Exhibit, Boston, MA, USA, pp. 98-108.
  • [28] Floquet, T., Edwards, C. and Spurgeon, S. (2007). On sliding mode observers for systems with unknown inputs, International Journal of Adaptive Control and Signal Processing 21(8-9): 638-656.
  • [29] Forssell, L. and Nilsson, U. (2005). ADMIRE, the aero-data model in a research environment version 4.0: Model description, Technical Report FOI-R-1624-SE, Swedish Defence Agency (FOI), Stockholm.
  • [30] Fridman, L., Davila, J. and Levant, A. (2007). High-order sliding-mode observation and fault detection, Proceedings of the IEEE Conference on Decision and Control, New Orleans, LA, pp. 4317-4322.
  • [31] Härkegård, O. and Glad, S. T. (2005). Resolving actuator redundancy-Optimal control vs. control allocation, Automatica 41(1): 137-144.
  • [32] Haskara, I., Ozguner, U. and Utkin, V. (1998). On sliding mode observers via equivalent control approach, International Journal of Control 71(6): 1051-1067.
  • [33] Hess, R. A. and Wells, S. R. (2003). Sliding mode control applied to reconfigurable flight control design, Journal of Guidance, Control and Dynamics 26(3): 452-462.
  • [34] Krasnova, S., Utkin, V. and Mikheev, Y. (2001). Cascade design of state observers, Automation and Remote Control 62(2): 207-226.
  • [35] Levant, A. (2003). Higher-order sliding modes, differentiation and output-feedback control, International Journal of Control 76(9-10): 924-41.
  • [36] Moreno, J. A. and Osorio, M. (2008). A Lyapunov approach to second-order sliding mode controllers and observers, 47th IEEE Conference on Decision and Control, Cancun, Mexico, pp. 2856-2861.
  • [37] Ng, K., Tan, C., Edwards, C. and Kuang, Y. (2007). New results in robust actuator fault reconstruction in linear uncertain systems, International Journal Robust and Nonlinear Control 17(4): 1294-1319.
  • [38] Patton, R. (1997). Robustness in model-based fault diagnosis: The 1997 situation, IFAC Annual Reviews 21: 101-121.
  • [39] Patton, R. and Chen, J. (1993). Optimal unknown input distribution matrix selection in robust fault diagnosis, Automatica 29(4): 837-841.
  • [40] Patton, R., Frank, P. and Clark, R. (1989). Fault Diagnosis in Dynamic Systems: Theory and Application, Prentice Hall, New York, NY.
  • [41] Saif, M. and Guan, Y. (1993). A new approach to robust fault detection and identification, IEEE Transactions on Aerospace and Electronic Systems 29(3): 685-695.
  • [42] Sharam, R. and Aldeen, M. (2007). Fault detection in nonlinear systems with unknown inputs using sliding mode observer, Proceedings of the American Control Conference, New York, NY, USA, pp. 432-437.
  • [43] Shtessel, Y., Buffington, J. and Banda, S. (2002). Tailless aircraft flight control using multiple time scale re-configurable sliding modes, IEEE Transactions on Control Systems Technology 10(2): 288-296.
  • [44] Tan, C. and Edwards, C. (2010). Robust fault reconstruction in uncertain linear systems using multiple sliding mode observers in cascade, IEEE Transactions on Automatic Control 55(4): 855-867.
  • [45] Tan, C. P. and Edwards, C. (2002). Sliding mode observers for detection and reconstruction of sensor faults, Automatica 38(2): 1815-1821.
  • [46] Tan, C. P. and Edwards, C. (2003). Sliding mode observers for robust detection and reconstruction of actuator and sensor faults, International Journal of Robust and Nonlinear Control 13(5): 443-463.
  • [47] Theilliol, D., Join, C. and Zhang, Y. (2008). Actuator fault tolerant control design based on a reconfigurable reference input, International Journal of Applied Mathematics and Computer Science 18(4): 553-560, DOI: 10.2478/v10006-008-0048-1.
  • [48] Utkin, V. I. (1992). Sliding Modes in Control Optimization, Springer-Verlag, Berlin.
  • [49] Wang, J., Tsang, K., Li, G. and Zhang, L. (2003). Cascade observer-based fault diagnosis for nonlinear systems, Proceedings of the IASTED International Conference on Modelling, Simulation and Optimization, Banff, Alberta, Canada, pp. 253-258.
  • [50] Zhou, K., Doyle, J. and Glover, K. (1996). Robust and Optimal Control, Prentice Hall, Upper Siddle River, NJ.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ7-0001-0008
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.