PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A model-based approach to fault-tolerant control

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A model-based controller architecture for Fault-Tolerant Control (FTC) is presented in this paper. The controller architecture is based on a general controller parameterization. The FTC architecture consists of two main parts, a Fault Detection and Isolation (FDI) part and a controller reconfiguration part. The theoretical basis for the architecture is given followed by an investigation of the single parts in the architecture. It is shown that the general controller parameterization is central in connection with both fault diagnosis as well as controller reconfiguration. Especially in relation to the controller reconfiguration part, the application of controller parameterization results in a systematic technique for switching between different controllers. This also allows controller switching using different sets of actuators and sensors.
Rocznik
Strony
67--86
Opis fizyczny
Bibliogr. 37 poz., rys.
Twórcy
  • Department of Electrical Engineering, Automation and Control, Technical University of Denmark, Building 326, DK-2800 Kgs. Lyngby, Denmark, hhn@elektro.dtu.dk
Bibliografia
  • [1] Basseville, M. and Nikiforov, I. (1993). Detection of Abrupt Changes-Theory and Application, Prentice Hall, Upper Saddle River, NJ.
  • [2] Blanke, M., Frei, C., Kraus, F., Patton, R. and Staroswiecki, M. (2000). What is fault-tolerant control?, Preprints of the 4th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes, SAFEPROCESS'2000, Budapest, Hungary, pp. 40-51.
  • [3] Blanke, M., Izadi-Zamanabadi, R., Bøgh, S. and Lunau, C. (1997). Fault tolerant control systems-A holistic view, Control Engineering Practice 5(5): 693-702.
  • [4] Blanke, M., Kinnart, M., Lunze, J. and Staroswiecki, M. (2003). Diagnosis and Fault-Tolerant Control, Springer, Berlin/Heidelberg.
  • [5] Boyd, S. and Barratt, C. (1991). Linear Controller Design-Limits of Performance, Prentice Hall, Upper Saddle River, NJ.
  • [6] Campbell, S., Horton, K. and Nikoukhah, R. (2002). Auxiliary signal design for rapid multi-model identification using optimization, Automatica 38(8): 1313-1325.
  • [7] Campbell, S., Horton, K., Nikoukhah, R. and Delebecque, F. (2000). Rapid model selection and the separability index, Proceedings of Safeprocess 2000, Budapest, Hungary, pp. 1187-1192.
  • [8] Campbell, S. and Nikoukhah, R. (2004a). Auxiliary Signal Design for Failure Detection, Princeton University Press, Princeton, NJ.
  • [9] Campbell, S. and Nikoukhah, R. (2004b). Software for auxiliary signal design, Proceedings of the American Control Conference, Boston, MA, USA, pp. 4414-4419.
  • [10] Frank, P. and Ding, X. (1994). Frequency domain approach to optimally robust residual generation and evaluation for model-based fault diagnosis, Automatica 30(5): 789-804.
  • [11] Gustafsson, F. (2000). Adaptive Filtering and Change Detection, Wiley & Sons, Chichester.
  • [12] Kerestecioglu, F. (1993). Change Detection and Input Design in Dynamic Systems, Research Studies Press, Baldock, Hertfordshire.
  • [13] Kerestecioglu, F. and Zarrop, M. (1994). Input design for detection of abrupt changes in dynamical systems, International Journal of Control 59(4): 1063-1084.
  • [14] Maciejowski, J. (1989). Multivariable Feedback Control, Addison Wesley, Boston, MA.
  • [15] Massoumnia, M. (1986). A geometric approach to the synthesis of failure detection filters, IEEE Transactions on Automatic Control 31(9): 839-846.
  • [16] Niemann, H. (2003). Dual Youla parameterization, IEE Proceedings-Control Theory and Applications 150(5): 493-497.
  • [17] Niemann, H. (2005). Fault tolerant control based on active fault diagnosis, Proceedings of the American Control Conference, Portland, OR, USA, pp. 2224-2229.
  • [18] Niemann, H. (2006a). Parameterization of extended systems, IEE Proceedings-Control Theory and Applications 153(2): 221-227.
  • [19] Niemann, H. (2006b). A setup for active fault diagnosis, IEEE Transactions on Automatic Control 51(9): 1572-1578.
  • [20] Niemann, H. and Poulsen, N. (2006). Fault tolerant control for uncertain systems with parametric faults, Preprints of the 6th IFAC Symposium on Fault Detection, Supervision ans Safety for Technical Processes, SAFEPROCESS'2006, Beijing, China, pp. 517-522.
  • [21] Niemann, H. and Poulsen, N. (2009a). Controller architectures for switching, Proceedings of the American Control Conference, St. Louis, MO, USA, pp. 1098-1103.
  • [22] Niemann, H. and Poulsen, N. (2009b). A concept for fault tolerant controllers, in Z. Kowalczuk (Ed.) Diagnosis of Processes and Systems, Pomeranian Science and Technology Publishers PWNT, Gdańsk, pp. 107-114.
  • [23] Niemann, H. and Stoustrup, J. (2002). Reliable control using the primary and dual Youla parameterization, Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas, NV, USA, pp. 4353-4358.
  • [24] Niemann, H. and Stoustrup, J. (2005). An architecture for fault tolerant controllers, International Journal of Control 78(14): 1091-1110.
  • [25] Niemann, H., Stoustrup, J. and Abrahamsen, R. (2004). Switching between multivariable controllers, Optimal Control-Application and Methods 25(2): 51-66.
  • [26] Nikoukhah, R. (1994). Innovations generation in the presence of unknown inputs: Application to robust failure detection, Automatica 30(12): 1851-1867.
  • [27] Nikoukhah, R. (1998). Guaranteed active failure detection and isolation for linear dynamical systems, Automatica 34(11): 1345-1358.
  • [28] Nikoukhah, R., Campbell, S. and Delebecque, F. (2000). Detection signal design for failure detection: A robust approach, International Journal of Adaptive Control and Signal Processing 14(7): 701-724.
  • [29] Poulsen, N. and Niemann, H. (2008). Active fault diagnosis based on stochastic tests, International Journal of Applied Mathematics and Computer Science 18(4): 487-496, DOI: 10.2478/v10006-008-0043-6.
  • [30] Saberi, A., Stoorvogel, A., Sannuti, P. and Niemann, H. (2000). Fundamental problems in fault detection and identification, International Journal of Robust and Nonlinear Control 10(14): 1209-1236.
  • [31] Skogestad, S. and Postlethwaite, I. (2005). Multivariable Feedback Control: Analysis and Design, Wiley, Hoboken, NJ.
  • [32] Stoorvogel, A., Niemann, H. and Saberi, A. (2001). Delays in fault detection and isolation, Proceedings of the American Control Conference, Washington, DC, USA, pp. 459-463.
  • [33] Stoustrup, J. and Niemann, H. (2001). Fault tolerant feedback control using the Youla parameterization, Proceedings of the 6th European Control Conference, Porto, Portugal, pp. 1970-1974.
  • [34] Tay, T., Mareels, I. and Moore, J. (1997). High Performance Control, Birkhäuser, Boston, MA.
  • [35] Zhang, X. (1989). Auxiliary Signal Design in Fault Detection and Diagnosis, Springer-Verlag, Heidelberg.
  • [36] Zhou, K., Doyle, J. and Glover, K. (1995). Robust and optimal control, Prentice Hall, Upper Saddle Rider, NJ.
  • [37] Zhou, K. and Ren, Z. (2001). A new controller architecture for high performance robust, and fault-tolerant control, IEEE Transactions on Automatic Control 46(10): 1613-1618.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ7-0001-0005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.