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This paper presents an adaptive Generalized Likelihood Ratio (GLR) test for multiple Faults Detection and Isolation (FDI)
in stochastic linear dynamic systems. Based on the work of Willsky and Jones (1976), we propose a modified generalized
likelihood ratio test, allowing detection, isolation and estimation of multiple sequential faults. Our contribution aims to
maximise the good decision rate of fault detection using another updating strategy. This is based on a reference model
updated on-line after each detection and isolation of one fault. To reduce the computational requirement, the passive GLR
test will be derived from a state estimator designed on a fixed reference model directly sensitive to system changes. We
will show that active and passive GLR tests will be mixed and give interesting results compared with the GLR of Willsky
and Jones (1976), and that they can be easily integrated in a reconfigurable Fault-Tolerant Control System (FTCS) to
asymptotically recover the nominal system performances of the jump-free system.
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1. Introduction

The diagnosis problem can be splitt into two steps: gen-
eration of residuals, which are ideally close to zero under
no-fault conditions and minimally sensitive to noise, and
residual evaluation, namely, the design of decision rules
based on these residuals. This problem has been solved
by many approaches: observers, parity space and fault de-
tection filter. All these approaches are focused on resid-
ual generation, but are missing an appropriate test for a
decision. In this work, we will develop a method which
takes into account the residual generation problem based
on a Kalman filter, associated with a GLR test decision for
multiple faults.

The GLR test has been used in a wide variety of ap-
plications including the detection of sensor and actuator
faults (Willsky, 1976; Willsky and Jones, 1976; Deck-
ert et al., 1977), electrocadiogram analysis (Gustafson et
al., 1978), geophysical signal processing (Basseville and
Benveniste, 1983), and freeway supervision (Willsky et
al., 1980). For sequential fault detection in discrete-time
stochastic linear systems, the GLR test includes the fol-

lowing steps:

1. Detection and isolation of one possible fault by ap-
plying a GLR detector for the innovation sequence
of the Kalman filter designed on the jump-free sys-
tem.

2. Updating the Kalman filter using the fault magnitude
estimate by the GLR detector.

3. Go to Step 1 to detect, isolate and estimate another
possible fault from measurements immediately avail-
able after the detection time of the last fault.

Following the notation used by Willsky (1986) or
Basseville and Nikiforov (1994), the updating strategy of
Willsky and Jones (1976), based on the incrementation of
the state estimate x̂k and its error covariance matrix Pk of
the Kalman filter, proceeds as follows:

x̂new
k = x̂old

k + [αj(k, r̂) − βj(k, r̂)] ν̂(k, r̂), (1)

P new
k = P old

k + [αj(k, r̂) − βj(k, r̂)] P ν(k, r̂)

× [αj(k, r̂) − βj(k, r̂)]T , (2)
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where (x̂new
k , Pnew

k ) and (x̂old
k , P old

k ) represent respec-
tively the new and old state estimates of the Kalman fil-
ter, αj(kj , r̂) and βj(kj , r̂) are the fault signatures on the
state and the state estimate, r̂ is the estimated time of fault
occurrence and (ν̂(k, r̂), P ν(k, r̂)) is the estimated fault
magnitude produced by the GLR detector, immediately
after the updating strategy (1). The innovation sequence
of the resulting Kalman filter is given by

γnew
k = γold

k − ρj(k, r̂)ν̂(k, r̂), (3)

Hnew
k = Hold

k + ρj(k, r̂)P ν(k, r̂)ρj(k, r̂)T . (4)

Some criticism of this updating strategy includes
what follows:

• What is the significant meaning of (x̂new
k , Pnew

k ) and
(γnew

k , Hnew
k )?

• Consequently, what are the stability and convergence
conditions of the resulting Kalman filter?

• The threshold level of the GLR detector must be cho-
sen to solve a trade-off between fast detection and
accurate fault estimation.

• γnew
k is not guaranteed to be a minimum variance

white innovation sequence, which a necessary con-
dition to minimize the rate of false alarms.

The first part of the paper presents an active GLR
test. We will show that the updating strategies (1) and (2)
have significant meaning for the Kalman filter designed on
a new reference model including the original state vector
of the system and the states of faults detected and isolated
during the processing. The stability and convergence con-
ditions of the augmented state Kalman filter designed on
the new reference model will be established.

To reduce the computational requirement of the ac-
tive GLR test, the second part of this paper presents a pas-
sive GLR test. Based on the augmented state Kalman fil-
ter designed on a fixed reference model including all the
states of hypothetical faults at the beginning of the pro-
cessing, the updating strategy will be based on the incre-
mentation of the state estimate and the state estimate error
covariance matrix after each detection of one fault as in
the work of Willsky and Jones (1976). Less powerful than
the active GLR test, we will show that it can be mixed with
the active GLR test to derive a complete strategy allowing
the treatment of the appearance and the disappearance of
sequential faults. In the last part, we will show that the
active and passive GLR tests can be easily integrated in a
reconfigurable Fault-Tolerant Control System (FTCS) to
asymptotically recover the nominal system performances
of the fault-free system.

2. Active GLR test

The first part of this section classifies the meaning of the
auxiliary innovation sequence (3) and (4) used in the mod-
ified GLR test by showing that (1) and (2) are included in
the augmented state Kalman filter,

[
x̂k+1

ν̂k+1

]
= X̂k+1 = ĀX̂k + B̄uk + Kkγk, (5)

[
P x

k+1 P xν
k+1

P νx
k+1 P ν

k+1

]
= Ωk+1

= ĀΩkĀT + Γ̄W Γ̄T

− ĀΩkC̄T
(
C̄ΩkC̄T + V

)−1
C̄ΩkĀT ,

(6)

Kk =
[

Kx
k

Kνj

k

]
= ĀΩkC̄T H−1

k , Hk = C̄ΩC̄T + V,

(7)
designed on the new reference model hj rewritten as

Xk+1 = ĀXk + B̄uk + Γ̄wk, (8)

yk = C̄Xk + vk (9)

with

Xk =
[

xk

νk

]
, Ā =

[
A fj

0 1

]
,

B̄ =
[

B
0

]
, C̄ =

[
C 0

]
, Γ̄ =

[
I
0

]
,

where x̂k+1 = x̂new
k+1 and P x

k+1 = Pnew
k+1 represents the

maximum likelihood prediction of the original state xk but
belonging now to the augmented state Xk.

Theorem 1. In the two-stage Kalman filter of Fried-
land (1969), which optimally implements (5), the updating
strategy rewritten as

x̂k+1 = ˆ̄xk+1 + ζj(k + 1, r̂)ν̂(k + 1, r̂), (10)

Pk+1 = P̄k+1 + ζj(k + 1, r̂)P ν(k + 1, r̂)ζj(k + 1, r̂)T ,
(11)

has the following meaning:

• (ˆ̄xk+1, P̄k+1

)
is the state prediction of the jump-free

system,

• (x̂k+1, Pk+1) is the reconfigured state prediction of
the faulty system

• (ν̂(k + 1, r̂), P ν(k + 1, r̂)) is the prediction of the
fault magnitude,

and is optimal under extremely well estimated r̂ if the aug-
mented state Kalman filter (5) is correctly initialized at the
detection time of the fault with

X̂k =
[

I ζj(k, r̂)
0 1

] [
ˆ̄xk

ν̂(k, r̂)

]
, (12)
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Ωk

=
[

I ζj(k, r̂)
0 1

] [
P̄k 0
0 P ν(k, r̂)

] [
I ζj(k, r̂)
0 1

]T

from the quantities
(
ˆ̄xk, P̄k

)
, (ν̂(k, r̂), P ν(k, r̂)) and

ζj(k, r̂) given by the GLR detector.

Proof. At time tj = r̂ + ρj , (ν̂) represents the minimum-
time prediction of ν given by

ν̂(tj + 1, r̂)

=
[(

CAρj−1fj

)T
H̄−1

tj

(
CAρj−1fj

)]−1

× (CAρj−1fj

)T
H̄−1

tj γ̄tj , (13)

P ν(tj + 1, r̂) =
[(

CAρj−1fj

)T
H̄−1

tj

(
CAρj−1fj

)]−1

,

(14)
under the assumption that ν has an infinite a priori co-
variance since �j(k, r̂) = 0 for k < tj and �j(tj , r̂) =
CAρj−1fj . Thus, the updating strategy (10) and (11) ap-
plied at time tj is given by

x̂tj+1 = ˆ̄xtj+1 + ζj(tj + 1, r̂j)ν̂(tj + 1, r̂), (15)

Ptj+1 = P̄tj+1 + ζj(tj + 1, r̂)P ν(tj + 1, r̂)ζT
j , (16)

and can be used to define the Gaussian state prediction of
the initial state Xtj+1 as

X̂tj+1 =
[

x̂tj+1

ν̂(tj + 1, r̂)

]
, (17)

Ωtj+1

=
[

Ptj+1 ζj(tj + 1, r̂)P ν

P ν(tj + 1, r̂)ζj(tj + 1, r̂)T P ν(tj + 1, r̂)

]
.

The augmented state Kalman filter (5) can be im-
plemented from the two-stage Kalman filter of Friedland
(1969) (see Appendix) described by

x̂k+1 = ˆ̄xk+1 + ζk+1ν̂k+1, (18)

Pk+1 = P̄k+1 + ζk+1P
ν
k+1ζ

T
k+1, (19)

where
(
ˆ̄xk+1, P̄k+1

)
are given by the Kalman filter de-

signed under h0,

ˆ̄xk+1 = Aˆ̄xk + Buk + K̄k(yk − C ˆ̄xk), (20)

P̄k+1 = AP̄kAT + W − AP̄kCT H̄−1
k CP̄kAT , (21)

K̄k = AP̄kCT H̄−1
k , (22)

H̄k = CP̄kCT + V, (23)

where (ν̂k+1, P
ν
k+1) are given by the fault filter

ν̂k+1 = ν̂k + Kν
kγk, (24)

P ν
k+1 = P ν

k − P ν
k �T

k H−1
k �kP ν

k , (25)

Kν
k = P ν

k �T
k H−1

k , (26)

γk = γ̄k − �kν̂k, (27)

Hk = H̄k + �kP ν
k �T

k . (28)

From the coupling equations

ζk+1 = (A − K̄kC)ζk + fj , (29)

�k = Cζk, (30)

the initial values of the two-stage Kalman filter are

[
ˆ̄xtj+1

ν̂tj+1

]
=
[

I −ζtj+1

0 1

]
X̂tj+1

=
[

ˆ̄xtj+1

ν̂(tj + 1, r̂)

]
, (31)

[
P̄tj+1 0

0 P ν
tj+1

]

=
[

I −ζtj+1

0 1

]
Ωtj+1

[
I −ζtj+1

0 1

]T

=
[

P̄tj+1 0
0 P ν(tj + 1, r̂)

]
, (32)

with ζtj+1 = ζj(tj + 1, r̂).
After some manipulations, ν̂ can be rewritten in the

form of a recursive filter,

ν̂(k + 1, r̂) = ν̂(k, r̂) + Kν
kγk, (33)

P ν(k + 1, r̂) = P ν(k, r̂)

− P ν�T
j (k, r̂)H−1

k �jP
ν , (34)

Kν
k = P ν(k, r̂)�T

j (k, r̂)H−1
k , (35)

γk = γ̄k − �j(k, r̂)ν̂k, (36)

Hk = H̄k + �j(k, r̂)P ν(k, r̂)�T
j (k, r̂). (37)

We can verify that (24) and (29) optimally implement
(33), completing the proof of Theorem 1.

To avoid the trade-off between fast detection and
accurate estimation, we conclude that the innovation se-
quence which must be used to detect, isolate and estimate
a new fault is the innovation sequence of the fault filter
(33), and (33) equals the auxiliary innovation sequence (1)
and (2) used in the modified GLR test. This innovation se-
quence is also the innovation sequence of the augmented
state Kalman filter guaranteed to be a minimum variance
white innovation sequence allowing the design of a GLR
detector. �

Theorem 2. After having initialized the augmented state
Kalman filter (5) at the detection time of the first fault with
the help of Theorem 1, another possible fault can be de-
tected, isolated and estimated by the following GLR de-
tector:

max
i∈[1,...,N ], i�=j

r̃∈W

{Ti(k, r̃ − ρi)} > ε, (38)
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with

T new
i (k, r) = bnew

i (k, r)2anew
i (k, r)−1, (39)

anew
i (k, r) =

k∑
t=r+ρi

[�new
i (t, r)]T H−1

t �new
i (t, r), (40)

bnew
i (k, r) =

k∑
t=r+ρi

[�new
i (t, r)]T H−1

t γt, (41)

where the new fault signatures �new
i (t, r) are recursively

computed as

ζnew
i (k + 1, r)

= (Ā − K̄kC̄)ζnew
i (k, r) +

[
fi

0

]
, (42)

�new
i (k, r) = C̄ζnew

i (k, r), (43)

ζnew
i (r, r) = 0, where ζnew

i (t, r) represents the additive
effect of a new fault on the augmented state prediction er-
ror of the Kalman filter (57).

Proof. The fault hypotheses denoted by hnew
i for i ∈

[1, . . . , N ] and i �= j can be modeled in relation with the
new reference model (8) as

Xk+1 = ĀXk + B̄uk +
[

fi(k, r)
0

]
νnew(k, r)

+ Γ̄wk, (44)

yk = C̄Xk + vk, (45)

and can be confronted with the augmented state Kalman
filter (5) as

hj : E(γt) = 0, t < r (46)

hnew
i : E(γt) = �new

i (t, r)νnew , k ≥ t ≥ r, (47)

i ∈ [1, . . . , N ] and i �= j, where the additive effect of
hnew

i on its state prediction error

[
ex

k

eν
k

]
= Xk − X̂k

and on its innovation sequence γk = yk − C̄X̂k is de-
scribed by (42) and (43).

We have

E{(γk−t − E(γk−t))(γk − E(γk))T } = 0, ∀t < k
(48)

and �new
i (r, r) = 0, and so until �new

i (r + ρi − 1, r) =
0, where �new

i (r + ρi, r) = CAρi−1fi (the detectability
indexes ρi have not lost their significant meaning). Hence,

the likelihood ratio between hnew
i (i �= j) and hj is

λnew
i (k, r, νnew)

=

exp

(
−1

2

k∑
t=r+ρi

‖γt−�new
i (t, r)νnew‖2

H̄−1
t

)

exp

(
− 1

2

k∑
t=r+ρi

‖γt‖2
H̄−1

t

) . (49)

Based on measurements up to time k, the maximum
likelihood prediction of νnew conditioned on r is

ν̂new(k + 1, r)

=

[
k∑

t=r+ρi

�new
i (t, r)T H̄−1

t �new
i (t, r)

]−1

×
k∑

t=r+ρi

�T
i (t, r)H̄−1

t γt. (50)

Substituting (50) in (49), we obtain the log-
likelihood ratio

T new
i (k, r) = 2 log(λnew

i (k, r, ν̂new(k + 1, r))). (51)

Thus, if

max
i∈[1,...,N ], r̃∈[0,...,k]

{T new
i (k, r̃ − ρi)} > ε,

then a new fault is detected and isolated from (j, ˆ̃r) =
arg max{T new

i (k, r̃ − ρi)} and its estimate is given by

ν̂(k + 1, r̂) = anew
j (k, r̂)−1bnew

j (k, r̂), (52)

P ν(k + 1, r̂) = anew
j (k, r̂)−1 (53)

with r̂ = ˆ̃r − ρj , which completes the proof. �

Theorem 3. The first step of the active GLR test de-
scribed by Theorems 1 and 2 follows the minimax strategy
developed by Basseville and Nikiforov (1994). The Kull-
back divergence between hnew

i and hj given by

δnew
i (k, r) =

k∑
t=r

[
�new

i (t, r)T H−1
t �new

i (t, r)
]
(νnew)2

(54)
is maximized with respect to νnew and satisfies
δnew
i (k, r) ≥ δ̃i(k, r), where

δ̃i(k, r) =
k∑

t=r

[
�i(t, r)T H−1

t �i(t, r)
]
(νnew)2 (55)

is the Kullback divergence derived from the modified GLR
test. The rate of good decisions will then be always supe-
rior to those obtained by the modified GLR test.
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Proof. From the equations of the Kalman filter, the fault
hypotheses hnew

i can be confronted as

hj : γ̄t = �tν
old, t < r, (56)

hnew
i : γ̄t =

[
�i(t, r) �t

] [ νnew

νold

]
, (57)

k ≥ t ≥ r + ρi, i ∈ [1, . . . , N ] for i �= j, where νold

can be viewed as a nuisance parameter. Using the optimal
prediction of νold under hj and hnew

i given by ν̂t+1 and
ν̂t+1 + ζν

i (t + 1, r)νnew , respectively, where ζν
i (t + 1, r)

describes the additive effect of the new fault on the bias
filter (33) given by

ζν
i (t + 1, r) = (I − Kν

t �t)ζν
i (t, r) − Kν

t �i(t, r) (58)

with ζν
i (r, r) = 0, the fault hypotheses (56) and (57) can

be equivalently confronted as

hj : γ̄t = �tν̂t+1, t < r,

hnew
i : γ̄t =

[
�i(t, r) �t

] [ νnew

ν̂t+1 + ζν
i νnew

]
,

(59)

t ≥ r + ρi, i ∈ [1, . . . , N ] for i �= j, or

hj : E (γ̄t − �tν̂t+1) = 0, t < r, (60)

hnew
i : E (γ̄t − �tν̂t+1) = [�i + �tζ

ν
i ] νnew , (61)

t ≥ r + ρi, i ∈ [1, . . . , N ], i �= j.

The likelihood ratio between (60) and (61) gives

λnew
i (k, r, νnew) (62)

=
[
exp

(− 1
2

k∑
t=r+ρi

‖(I − �tK
ν
t

)(
γ̄t − �tν̂t

)‖2
Q−1

t

)

× exp
(− 1

2

k∑
t=r+ρi

‖(I − �tK
ν
t

)(
γ̄t − �tν̂

− [�i + �tζ
ν
i

]
νnew‖2

Q−1
t

))]−1

,

where

Qt = (I − �tK
ν
t )Ht(I − �tK

ν
t )T (63)

since

γ̄t − �tν̂t+1 = (I − �tK
ν
t ) (γ̄t − �tν̂t) , (64)

�i(t, r) + �tζ
ν
i (t + 1, r)

= (I − �tK
ν
t ) (�i + �tζ

ν
i ) , (65)

or

λi(k, r, νnew) (66)

= exp
(
− 1

2

k∑
t=r+ρi

‖(γ̄t − �tν̂t

− [�i + �tζ
ν
i

]
νnew

)‖2
H−1

t

)

× [exp
(− 1

2

k∑
t=r+ρi

‖(γ̄t − �tν̂t

)‖2
H−1

t

)
]−1.

From the transformation

Tk =
[

I −ζk

0 I

]

used in Appendix, let

Tkζnew
i (k, r) =

[
ζi(k, r)
ζν
i (k, r)

]
.

Thus, the new fault signatures (42) can then be equiva-
lently computed as

Tk+1ζ
new
i (k + 1, r) = s(k, r) + Tk+1

[
fi

0

]
,

�new
i (k, r) = C̄T−1

k Tkζnew
i (k, r),

s(k, r) = Tk+1(Ā − KkC̄)T−1
k

× Tkζnew
i (k, r),

(67)

leading to[
ζi(k + 1, r)
ζν
i (k + 1, r)

]
= M

[
ζi(k, r)
ζν
i (k, r)

]
+
[

fi

0

]
,

�new
i (k, r) = C

[
I ζk

] [ ζi(r, r)
ζν
i (r, r)

]
,

(68)

with

M =
[

A − K̄kC 0
−Kν

kC I − Kν
k�k

] [
ζi(k, r)
ζν
i (k, r)

]

+
[

fi

0

]
,

[
ζi(r, r)
ζν
i (r, r)

]
= 0,

where (68) gives �new
i (k, r) = �i(k, r) + �kζν

i (k, r).
We conclude that (66) is equivalent to (49). From

the two-stage Kalman filter results, we can verify that
P ν

i (k+1, r) = anew
i (k, r)−1 satisfying the following Ric-

cati difference equation:[
Ω 0
0 P ν

i (k + 1, r)

]

=
[

ĀΩĀT + W̄ − KkC̄ΩkĀT 0
0 [I − Kν

i �new
i ] P ν

i

]
,

(69)
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where

Kν
i (k, r) = P ν

i �newT
i

[
C̄ΩkC̄T + V

+ �new
i P ν

i �newT
i

]−1

minimizes the trace of P ν
i (k + 1, r) (and where the gain

of the augmented state Kalman filter Kk minimized the
trace of Ωk+1), and the Kullback divergence δnew

i (k, r) =
[P ν

i (k, r)]−1 (νnew)2 is then maximized with respect to
νnew . We have that

[
Ωk+1 0

0 P ν
i (k + 1, r)

]

is equivalent to

⎡
⎣ P̄k+1 0 0

0 P ν
k+1 + ζν

i P ν
i ζνT

i ζν
i P ν−1

i

0 P ν−1
i ζνT

i P ν
i

⎤
⎦ . (70)

From (70), the Kullback divergence between hnew
i

and h0 can be expressed as[
νold

νnew

]T[
P ν

k+1 + ζν
i P ν

i ζνT
i ζν

i P ν−1
i

P ν−1
i ζνT

i P ν
i

]−1[
νold

νnew

]

=
[

νold − ζν
i νnew

νnew

]T [
P ν

k+1 0
0 P ν

i

]−1

(71)

×
[

νold − ζν
i νnew

νnew

]
.

The Kullback divergence (71) attains its minimal
value δnew

i (k, r) = [P ν
i (k + 1, r)]−1 (νnew)2 for νold =

ζν
i (k+1, r)νnew . Hence we conclude that the first step of

the active GLR test follows a minimax strategy (see Ap-
pendix), which completes the proof of Theorem 3. Based
on an inductive reasoning with the help of Theorems 1 and
2, the proposed active GLR test is then derived leading to
a GLR detector of the form

max
i∈[1,...,N ],i�=[jumps already treated] r̃∈W

{T new
i (k, r̃ − ρi)}

> ε, (72)

where the state vector

Xk =
[

xT
k (νold)T

]T
of the reference model (44) includes q states of faults

νold
k =

[
ν1

k . . . νq
k

]T
detected and isolated during the recursive processing.

In the work of Basseville and Nikiforov (1994), the
off-line statistical decoupling of nuisance parameters is
reduced to a static decoupling problem in a regression

model. Our active GLR test solves on-line a dynamic sta-
tistical decoupling problem by rejecting the nuisance pa-
rameters which are statistically significant (see also Ap-
pendix). Under the multiple faults detectability and dis-
tinguishability conditions of Theorem 1, the augmented
state Kalman filter is guaranteed to be stable at each step
of the recursive treatment. With this implementation, the
estimation of faults detected and isolated during the pro-
cessing will be improved from measurements available af-
ter their detection. In the case where the old faults are
extremely well estimated (the fault prediction errors do
not converge exponentially to zero as the state prediction
of the jump-free system but only asymptotically), then
δnew
i (k, r) = δ̃i(k, r) and the GLR test coincides with

the modified GLR test. �

3. Passive GLR test

The passive GLR test is based on the assumption that
faults occur frequently. Hence, assume that the fixed ref-
erence model denoted by HN is described as

Xk+1 = ĀXk + B̄uk + Γ̄wk, (73)

yk = C̄Xk + vk, (74)

with

Ā =
[

A F
0 1

]
, B̄ =

[
B
0

]
,

Γ̄ =
[

I
0

]
, C̄ =

[
C 0

]
,

Xk =
[

xk

νk

]
,

the augmented state model including all jump states

νk =
[

ν1
k . . . νj

k . . . νN
k

]
that we wish to detect and isolate. From (73) and (74),
the described fault hypothesis hj can be viewed as an im-
pulsive abrupt change in the j-th hypothetical jump state,
modeled as

νj
k+1 = νj

k + Δνδkr , ∀j ∈ [1, . . . , N ], (75)

where r is the unknown occurrence time of the impulsive
abrupt change, Δν is the jump state increment and δkr

is the Kronecker operator. Substituting (75) in (73), we
obtain the impulsive fault hypotheses, denoted by hΔ

j , de-
scribed as

Xk+1 = ĀXk + B̄uk + fΔ
j (k, r)Δνj(k, r) + Γ̄wk,

yk = C̄Xk + vk,

(76)

with Δνj(k, r) = Δνjδkri , fΔ
j (k, r) = fΔ

j δkri , where

fΔ
j =

[
0
Ij

]
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and
IT
j =

[
0 . . . 1 . . . 0

]
has unity in the j-th position and zero elsewhere.

Based on an approach very similar to the modified
GLR test, is the augmented state Kalman filter designed
on the reference model (73) and (74).

X̂k+1 = ĀX̂k + B̄uk + Kk(yk − C̄X̂k),

Ωk+1 = ĀΩkĀT + Γ̄W Γ̄T

− ĀkΩkC̄T (Hk)−1
C̄ΩkĀT ,

Kk = ĀΩkC̄T H−1
k ,

Hk = C̄ΩkC̄T + V,

(77)

The additive effect of the impulsive jump hypotheses hΔ
j

on the state prediction error and on the innovation se-
quence of the augmented state Kalman filter propagates
as

ek+1 = ẽk+1 + ζΔ
j (k + 1, r)Δν, (78)

γk = γ̃k+1 + �Δ
j (k, r)Δν, (79)

where ẽk+1 and γ̃k represent the state prediction error
and the innovation sequence on the jump-free system, and
ζΔ
j (k + 1, r) and �Δ

j (k, r) propagate as

ζΔ
j (k + 1, r) = (Ā − K̄kC̄)ζΔ

j (k, r),

ζΔ
j (r, r) = fΔ

j ,

�Δ
j (k, r) = C̄ζΔ

j (k, r), (80)

Thus, we can apply the following GLR detector:

max
j∈[1,...,N ], r̃∈W

{T Δ
j (k − ρj , r̃)} > ε, (81)

with

TΔ
j (k, r) = bΔ

j (k, r)2aΔ
j (k, r)−1, (82)

aΔ
j (k, r) =

k∑
t=r+ρj

�ΔT
j (t, r)H−1

t �Δ
j (t, r), (83)

bΔ
j (k, r) =

k∑
t=r+ρj

�ΔT
j (t, r)H−1

t γt. (84)

If
max
j, r̃

{T Δ
j (k − ρj , r̃} > ε,

then
(i, ˆ̃r) = arg max

j,r̃
{T Δ

j (k, r̃ − ρj)}

and the impulsive fault hΔ
i is declared to occur at the time

when r̂ = ˆ̃r − ρi, with

Δν̂(k + 1, r̂) = aΔ
i (k, r̂)−1bΔ

i (k, r̂), (85)

PΔν(k + 1, r̂) = aΔ
i (k, r̂)−1 (86)

representing the maximum likelihood prediction of the
fault increment Δν (under the assumption that Δν has
an infinite a priori covariance ). At the detection time of
the first fault, the tracking ability of the augmented state
Kalman filter (129) can be improved from the updating
strategy as

X̂new
k+1 = X̂old

k+1 + ζΔ
i (k + 1, r̂)Δν̂(k + 1, r̂),

Ωnew
k+1 = Ωold

k+1

+ ζΔ
i (k + 1, r̂)PΔν(k + 1, r̂)ζΔ

i (k + 1, r̂)T

(87)

In our case, the state of the matched filters given by
ζΔ
j (k, r) is spanned in the trajectory space of the predic-

tion errors of the augmented state Kalman filter. Thus,
(87) substituted in the augmented state Kalman filter (77)
improves its tracking ability without producing a possible
instability on the resulting filter (under the stability and
convergence conditions of the augmented state Kalman
filter given by Jamouli (2007)). The treatment of another
impulsive fault is then obtained by applying the GLR de-
tector (81) to the resulting filter after having reinitialized
ζΔ
j (k, r) = 0, ∀j ∈ [1, . . . , N ] immediately after the fil-

ter incrementation. The new initialization (139) allows
E(X̂new

k ) to reach the true system state very quickly (and
E(γt) to reach zero for fault compensation, consequently)
avoiding the detection of the same fault several times.
From inductive reasoning, the passive GLR test is then
derived and consists of the following steps:

1. Detection, isolation and estimation of one impulsive
fault with the GLR detector (81).

2. Updating the augmented state Kalman filter (77) with
(87) to improve its tracking.

3. Go to Step 1.

Sequential multiple decision theory is not complete
and the choice of the threshold level ε is not studied in this
paper. However, some simulation results not presented in
this paper show that only the statistical tuning parame-
ter ε can be fixed at the beginning of the processing (this
is not the threshold level which is adaptive, but the aug-
mented Kalman filter). If the updated reference model
(8) is substituted into the fixed reference model (73), the
fault hypothesis hΔ

i can model another jump among the
old changes or also the disappearance of the old jumps.
In this case, a mixed active/passive GLR test can be de-
rived for a complete strategy allowing the treatment of the
appearance and the disappearance of sequential faults.

4. Reconfigurable fault-tolerant control
system

The purpose of this section is to show how the active
and passive GLR test can be used in an FTCS. A Fault-
Tolerant Control System (FTCS) is a control system that
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possesses the ability to accommodate system component
failures automatically. The existing methods for reconfig-
urable controller design include a linear quadratic regula-
tor (Looze et al., 1985), eigenstructure assignment (Jiang,
1994), a multiple model (Maybeck and Stevens, 1991),
set-membership approaches (Puig, 2010), adaptive con-
trol (Bodson and Groszkiewicz, 1997), a pseudo-inverse
(Caglayan, 1988) and model following (Huang and Sten-
gel, 1990).

Recently, Mahmoud (2008; 2009) and Rafi et al.
(2010) proposed a kind of stabilizing controllers for fault
tolerant control. For fuzzy systems (Tong et al., 2008), a
new FTC approach is developed taking into account un-
certainties in system models (Rodrigues, 2007). In gen-
eral, an FTCS works as follows: a suitable Fault Detec-
tion and Isolation (FDI) strategy identifies the faults and
their estimates are used to generate additional input sig-
nals which are superimposed on the nominal control in-
puts in such a way that the influence of the faults on the
regulated variables is rejected.

To integrate the standard GLR test in an FTCS, Will-
sky (1976) proposed a control law of the form uk =
−Lx̂new

k . To do the same with our active GLR test, Sec-
tion 5 proposes the design of a Linear Quadratic Gaussian
(LQG) regulator (Anderson and Moore, 1990) of the form
uk = −LX̂k, where X̂k will be the state prediction of the
updated reference model, thus reconfigured on-line after
each detection and isolation of one fault.

Our FTCS is only designed to reach the unique goal

lim
k→∞

E(yk) = 0 subject to r < ∞, (88)

or, in other words, to asymptotically reject the effect of
faults on the system output (the reference input will be
maintained equal to zero, avoiding the need for a recon-
figurable feedforward control law). The proposed FTCS
is based on the active GLR test integrated via a reconfig-
urable control law designed on the model

Xk+1 = ĀXk + B̄uk + Γ̄wk, (89)

yk = C̄Xk + vk, (90)

where the main problem in reaching our goal is that the
pair (Ā, B̄) has N uncontrollable modes (under control-
lable (A, B)). The reconfigurable control law of the form
uk = un

k − Gν̂k will be designed in such a way that
the nominal control un

k = −L̄̂̄xk of the jump-free system
(obtained by an LQG approach on an infinite horizon) is
reconfigured on-line after each detection and isolation of
one impulsive fault by the additive term Gν̂k.

In order to design G in relation with the available
nominal control law, we assume that the implementation
of the active GLR test is based on a two-stage Kalman fil-
ter, the only optimal filter which gives the state prediction
of the jump-free system ̂̄xk. Thus, let

uk = un
k − Gνk, (91)

be the control law that we wish to design for a physical
rejection of faults νk. Under the state transformation

[
x̄k

νk

]
=
[

I T
0 I

] [
xk

νk

]
, (92)

the system (89) with (92) can be expressed as
[

x̄k+1

νk+1

]
=
[

A (I − A)T + F
0 I

] [
x̄k

νk

]
(93)

+
[

B
0

]
(un

k − Gνk), (94)

yk =
[

C −CT
] [ x̄k

νk

]
, (95)

and the physical rejection of faults will be obtained if and
only if T and G satisfy the algebraic equations

(I − A)T + F = −BG, (96)

CT = 0. (97)

Under the existence condition for a solution to (96)
and (97), i.e.,

rang
[

A − I B −F
C 0 0

]
= rang

[
I − A B

C 0

]
,

(98)
for the gain G of the control law (91), the solution of (96)
yields

G = [C(I − A)−1B]−1C(I − A)−1F (99)

and T = (I − A)−1(BG − F ). Under (99), (93) gives
[

x̄k+1

νk+1

]
=
[

A 0
0 I

] [
x̄k

νk

]
(100)

+
[

B
0

]
un

k +
[

I
0

]
wk, (101)

yk =
[

C 0
] [ x̄k

νk

]
+ vk, (102)

where x̄k represents the state of the jump-free system.
Thus, under (A, B) controllable, the LQG regulator un

k =
−L̄ˆ̄xk can be designed on the jump-free system h0 (from
the separation principle) to obtain the nominal system per-
formances (not defined here). The reconfigurated control
law, which reject q fault uncontrollable modes, is given by

uk = −L̄ˆ̄xk − Gν̂k (103)

from the two-stage Kalman filter or, equivalently,

uk = − [ L̄ G
] [ I −ζk

0 I

] [
I ζk

0 I

] [
ˆ̄xk

ν̂k

]

= − [ L̄ G − L̄ζ
] [ x̂k

ν̂k

]
, (104)
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Fig. 1. Reconfigurable FTCS scheme based on the active GLR
test.

from the augmented state Kalman filter. Note that, after
each detection and isolation of one fault, the nominal con-
trol law un

k = −L̄ˆ̄xk is not affected by the active GLR test
but only corrected by the additive term Gν̂k depending on
the old fault estimate (improved with the measurements
available after their detection). The active GLR test de-
pends only on the state prediction errors of the Kalman
filter decoupled from uk, and we can propose the recon-
figurable FTCS scheme of Fig. 1.

The reference model used for the design of the con-
trol law GLR test coincides with that used by the GLR
test. After each detection and isolation of one fault, the
reference model is updated with the new state of the fault
and the three parts of the FTCS, i.e., the GLR detector, the
Kalman filter and the control law, can be reconfigured in
harmony by the reconfiguration mechanism. To reduce the
computational requirements, the passive GLR test work-
ing on a fixed reference model can be used but the sta-
tistical performances of the reconfigurable FTCS will be
closely related by the rates of false alarms and good deci-
sions of the statistical test used.

5. Results

To illustrate the proposed approach, we considered the
system described by the following matrices:

A =

⎡
⎢⎢⎣

0.6 0.2 0 0
0 0.2 0.1 0
0 0 0.4 0.1
0 0 0 0.5

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

0 1
1 0
0 1
1 0

⎤
⎥⎥⎦ ,

(105)

C =

⎡
⎣ 1 0 0 0

0 1 0 0
0 0 1 1

⎤
⎦ , F =

⎡
⎢⎢⎣

1 0
1 1
1 1
0 1

⎤
⎥⎥⎦ ,

(106)

W = 0.01I, V = 0.5I, (107)

where I is the identify matrix of the appropriate
dimensions. Faults isolability is guaranteed with
rank [CAf1 CAf2] and F = [f1 f2]. The statistical
variables describing the performances of the reconfig-
urable FTCS coincide with those describing the perfor-
mances of the statistical test. Thus, by simplifying the
Monte Carlo simulation, the proposed example will be re-
alized in open loop.

In the field of dynamic systems, the signal-to-noise
ratio δi(k, r) is generally greater than the signal to noise
ratio is in the fields of electrocardiogram analysis or geo-
physical signal processing, and the size M of the sliding
window W = [k − M ≤ r̃ ≤ k] can be generally chosen
small.

First, we suppose one fault occurred at 350 s with
magnitude 2, and obtain the results of Fig. 2.
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Fig. 2. First state component and its estimate produced by Will-
sky’s algorithm.
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Fig. 3. Second state component and its estimate produced by
Willsky’s algorithm.

In the first case, the results show that the proposed
state estimate given by our filter is more adaptive to the
fault occurrence than Willsky’s algorithm.

In the second case, we suppose that two sequential
faults with magnitude 2, occurred at 350 s and 400 s. Fig-
ures 3–21 display the corresponding results.
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Fig. 4. Third state component and its estimate produced by
Willsky’s algorithm.
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Fig. 5. Fourth state component and its estimate produced by
Willsky’s algorithm.
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Fig. 6. GLR test applied to Willsky’s algorithm.

In the case of two sequential faults, the GLR detector
applied to the augmented model allows detecting the first
fault at 350 s and the second one at 400 s. Willsky’s GLR
detects just the first fault at 350 s, and cannot detect the
second.

Remark 1. We also computed the rate of false alarms
and the rate of good detections with 105 Monte Carlo tri-
als. We obtained P̂F 	 0.01, P̂D 	 0.85 for the modified
GLR test, and P̂F 	 0.0055, P̂D 	 0.91 for the passive
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Fig. 7. First state component and its estimate produced by our
adaptive filter algorithm.
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Fig. 8. Second state component and its estimate produced by
our adaptive filter algorithm.
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Fig. 9. Third state component and its estimate produced by our
adaptive filter algorithm.

GLR test which is clearly much powerful. We conclude
that the passive GLR test is very powerful when quick de-
tections lead to bad fault estimates and thus very useful for
FTCS to maximize the rate of good decisions specially in
regard with the occurrence of a considerable fault which
may greatly affect the nominal system performance.

Remark 2. We can improve this approach of detection
and isolation with an active GLR based on a free model
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Fig. 10. Fourth state component and its estimate produced by
our adaptive filter algorithm.
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Fig. 11. GLR test applied to our adaptive filter.
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Fig. 12. First state component and its estimate produced by
Willsky’s algorithm in the presence of two sequential
faults.

which will be augmented after each detection and isola-
tion. The faults already detected and isolated will be con-
sidered as perturbations and we will update the new GLR
in order to detect another fault.

Sequential multiple decision theory is not complete
and the choice of the threshold level ε is not studied in this
paper. However, some simulation results not presented in
this paper show that only the statistical tuning parameter
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Fig. 13. Second state component and its estimate produced by
Willsky’s algorithm in the presence of two sequential
faults.
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Fig. 14. Third state component and its estimate produced by
Willsky’s algorithm in the presence of two sequential
faults.

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6

7

Fig. 15. Fourth state component and its estimate produced by
Willsky’s algorithm in the presence of two sequential
faults.

ε can be fixed at the beginning of the processing (it is not
the threshold level which is adaptive, but the augmented
Kalman filter).
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Fig. 16. GLR test applied to Willsky’s algorithm in the presence
of two sequential faults.
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Fig. 17. First state component and its estimate produced by our
adaptive algorithm in the presence of two sequential
faults.
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Fig. 18. Second state component and its estimate produced by
our adaptive algorithm in the presence of two sequen-
tial faults.

6. Conclusion

Derived from the works of Willsky and Jones (1976), this
paper has presented an active GLR test for sequential fault
detection in stochastic discrete-time linear systems. From
a new updating strategy based on the statistical rejection
of the faults detected and isolated during the recursive
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Fig. 19. Third state component and its estimate produced by our
adaptive algorithm in the presence of two sequential
faults.
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Fig. 20. Fourth state component and its estimate produced by
our adaptive algorithm in the presence of two sequen-
tial faults.

treatment, the rate of false alarms was minimized and the
rate of good decisions maximized. The active GLR test
was integrated in a reconfigurable fault-tolerant control
system by using an LQG regulator designed for the jump-
free system where the nominal control law is corrected
on-line to asymptotically reject the influence of faults.
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Appendix

The predictive form of Friendland’s two-stage Kalman fil-
ter optimally implements the following augmented state
Kalman filter:[

x̂k+1

ν̂k+1

]
= X̂k+1 = ĀX̂k + B̄uk + Kkγk, (108)

[
P x

k+1 P xν
k+1

P νx
k+1 P ν

k+1

]
= Ωk+1 (109)

= ĀΩkĀT + Γ̄W Γ̄T (110)

− ĀΩkC̄T
(
C̄ΩkC̄T + V

)−1
C̄ΩkĀT ,
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Kk =
[

Kx
k

Kνj

k

]
= ĀΩkC̄T H−1

k , Hk = C̄ΩC̄T + V,

(111)
with

X̂0 =
[

x̂0

ν̂0

]
, Ω0 =

[
P x

0 P xν
0

P νx
0 P ν

0

]
,

where

Ā =
[

A F
0 I

]
, B̄ =

[
B
0

]
, C̄ =

[
C 0

]
,

Γ̄ =
[

I
0

]
,

x̂k+1 = ˆ̄xk+1 + ζk+1ν̂k+1, (112)

Pk+1 = P̄k+1 + ζk+1P
ν
k+1ζ

T
k+1. (113)

Here
(
ˆ̄xk+1, P̄k+1

)
are given by the bias-free filter

ˆ̄xk+1 = Aˆ̄xk + Buk + K̄k(yk − C ˆ̄xk), (114)

P̄k+1 = AP̄kAT + W − AP̄kCT (H̄k)−1CP̄kAT ,
(115)

K̄k = AP̄kCT H̄−1
k , (116)

H̄k = CP̄kCT + V, (117)

where (ν̂k+1, P
ν
k+1) are given by the bias filter

ν̂k+1 = ν̂k + Kν
kγk, (118)

P ν
k+1 = P ν

k − P ν
k �T

k H−1
k �kP ν

k , (119)

Kν
k = P ν

k �T
k H−1

k , (120)

γk = γ̄k − �kν̂k, (121)

Hk = H̄k + �kP ν
k �T

k . (122)
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