PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of human motoneuron afterhyperpolarization duration in health and disease

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The results of the investigatigation of afterhyperpolarization (AHP) duration in normal aging and selected neuromuscular disorders are presented. This investigation yielded unexpected results: the AHP shortening in myogenic disease (DMD) and no significant difference from control values in neurogenic disease (ALS). However, introduction of age factor revealed novel aspects of the human ALS, which can be interpreted on the basis of the results obtained in a SOD1 mice, thus confirming usefulness of this animal model of ALS. In spastic patients the AHP was prolonged and the difference from the control AHP duration decreased with age and disease duration. Our results suggest that the match between temporal characteristics of the AHP of MN and of the twitch of its muscle unit is preserved during normal aging and in spasticity, but not in the DMD.
Twórcy
autor
  • Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, ul. Ks. Trojdena 4, 02-109 Warsaw, Poland, masia@ibib.waw.pl
Bibliografia
  • [1] Kernell D.: The limits of firing frequency in cat lumbosacral motoneurons possessing different time course of afterhyperpolarization. Acta Physiol. Scand. 1965, 65, 87–100.
  • [2] Basmajian J., Stecko G.: A new bipolar electrode for electromyography. J. Appl. Physiol. 1962, 17, 849.
  • [3] Mazurkiewicz Ł., Piotrkiewicz M.: Computer system for identification and analysis of motor unit potential trains. Biocyber. Biomed. Eng. 2004, 24, 15–23.
  • [4] Person R. S., Kudina L. P.: Discharge frequency and discharge pattern of human motor units during voluntary contraction of muscle. Electroencephalogr. Clin. Neurophysiol. 1972, 32, 471–483.
  • [5] Person R. S.: Spinal mechanisms of muscle contraction control. In: Soviet scientific review, T.M. Turpaev (Ed.), Harwood Academic Publishers. 1992, 1–83.
  • [6] Tokizane T., Shimazu H.: Functional differentiation of human skeletal muscle. Springfield: Charles C. Thomas, 1964.
  • [7] Calvin W. H.: Three modes of repetitive firing and the role of threshold time course between spikes. Brain Res. 1974, 69, 341–346.
  • [8] Matthews P. B. C.: Relationship of firing intervals of human motor units to the trajectory of post-spike after-hyperpolarization and synaptic noise. J. Physiol. (Lond) 1996, 492, 597–628.
  • [9] Kudina L. P.: Analysis of firing behaviour of human motoneurones within ‘subprimary range’. J. Physiol. (Paris) 1999, 93, 115–123.
  • [10] Piotrkiewicz M.: An influence of afterhyperpolarization on the pattern of motoneuronal rhythmic activity. J. Physiol. (Paris) 1999, 93, 125–133.
  • [11] Powers R. K., Binder M. D.: Relationship between the time course of the afterhyperpolarization and discharge variability in cat spinal motoneurones. J. Physiol. (Lond) 2000, 528, 131–150.
  • [12] Piotrkiewicz M., Kudina L., Hausmanowa-Petrusewicz I., Zhoukovskaya N., Mierzejewska J.: Discharge properties and afterhyperpolarization of human motoneurons. Biocyber. Biomed. Eng. 2001, 21, 53–75.
  • [13] Piotrkiewicz M., Kudina L., Mierzejewska J., Jakubiec M., Hausmanowa-Petrusewicz I.: Age-related change in duration of afterhyperpolarization of human motoneurones. J. Physiol. (Lond) 2007, 585, 483–490.
  • [14] Vignos P. J. Jr., Archibald K. C.: Maintenance of ambulation in childhood muscular dystrophy. J. Chronic Dis. 1960, 12, 273–290.
  • [15] Piotrkiewicz M., Hausmanowa-Petrusewicz I., Mierzejewska J.: Are motoneurons involved in muscular dystrophy? Clin. Neurophysiol. 1999, 110, 1111–1122.
  • [16] Huizar P., Kuno M, Kudo N. Y. M.: Reaction of intact spinal motoneurons to partial denervation of the muscle. J. Physiol. (Lond) 1977, 265, 175–191.
  • [17] Rasminsky M.: Physiological properties of dystrophic mouse spinal root axons. Electroencephalogr. Clin. Neurophysiol. Suppl 1982, 36, 99–105.
  • [18] Scott O. M., Hyde S. A., Vrbova G., Dubowitz V.: Therapeutic possibilities of chronic low frequency electrical stimulation in children with Duchenne muscular dystrophy. J. Neurol. Sc. 1990, 95, 171–182.
  • [19] Kim T. W., Wu K., Black I. B.: Deficiency of brain synaptic dystrophin in human Duchenne muscular dystrophy. Ann. Neurol. 1995, 38, 446–449.
  • [20] Licursi V., Caiello I., Lombardi L., De Stefano M. E., Negri R., Paggi P.: Lack of dystrophin in mdx mice modulates the expression of genes involved in neuron survival and differentiation. Eur. J. Neurosc. 2012, 35, 691–701.
  • [21] Bateson D. S., Parry D. J.: Motor units in a fast-twitch muscle of normal and dystrophic mice. J. Physiol. (Lond) 1983, 345, 515–523.
  • [22] Scott O. M., Vrbova G., Hyde S. A., Dubowitz V.: Responses of muscles of patients with Duchenne muscular dystrophy to chronic electrical stimulation. J. Neurol. Neurosurg. Psychiatry 1986, 49, 1427–1434.
  • [23] Webster C., Silberstein L., Hays A. P., Blau H. M.: Fast muscle fibers are preferentially affected in Duchenne muscular dystrophy. Cell 1988, 52, 503–513.
  • [24] Hayes A., Lynch G. S., Williams D. A.: The effects of endurance exercise on dystrophic mdx mice. I. Contractile and histochemical properties of intact muscles. Proc. Biol. Sci. 1993, 253, 19–25.
  • [25] Kernell D., Eerbeek O., Verhey B. A.: Relation between isometric force and stimulus rate in cat’s hindlimb motor units of different twitch contraction time. Exp. Brain Res. 1983, 50, 220–227.
  • [26] Piotrkiewicz M., Celichowski J.: Tetanic potentiation in motor units of rat medial gastrocnemius. Acta Neurobiol. Exp. 2007, 67, 35–42.
  • [27] Vrbova G.: Duchenne dystrophy viewed as a disturbance of nerve-muscle interactions. Muscle Nerve 1983, 6, 671–675.
  • [28] Piotrkiewicz M., Hausmanowa-Petrusewicz I., Mierzejewska J., Jakubiec M.: Motoneuron “fastness” in Amyotrophic Lateral Sclerosis, in: Lecture Notes of 68th ICB Seminar “Motoneurons and motoneuron pools”, G. Vrbova, M. Piotrkiewicz, W. Zmysłowski (Eds) 2005, ICB, Warsaw, 69–76.
  • [29] Morales F. R., Boxer P. A., Fung S. J., Chase M. H.: Basic electrophysiological properties of spinal cord motoneurons during old age in the cat. J. Neurophysiol. 1987, 58, 180–194.
  • [30] Cameron W. E., Jodkowski J. S., Fang H., Guthrie R. D.: Electrophysiological properties of developing phrenic motoneurons in the cat. J. Neurophysiol. 1991, 65, 671–679.
  • [31] Vandervoort A. A., McComas A. J.: Contractile changes in opposing muscles of the human ankle joint with aging. J. Appl. Physiol. 1986, 61, 361–367.
  • [32] Skorjanc D., Traub I., Pette,D.: Identical responses of fast muscle to sustained activity by low-frequency stimulation in young and aging rats. J. Appl. Physiol. 1998, 85, 437–441.
  • [33] Hook P., Sriramoju V., Larsson L.: Effects of aging on actin sliding speed on myosin from single skeletal muscle cells of mice, rats, and humans. Am. J. Physiol. Cell Physiol. 2001, 280, C782–788.
  • [34] Kernell D., Bakels R., Copray J. C.: Discharge properties of motoneurones: How are they matched to the properties and use of their muscle units? J. Physiol. (Paris) 1999, 93, 87–96.
  • [35] Brooks B. R.: El Escorial world federation of neurology criteria for the diagnosis of amyotrophic lateral sclerosis. J. Neurol. Sci. 1994, 124 Suppl, 96–107.
  • [36] Holt G. R., Softky W. R., Koch C., Douglas R. J.: Comparison of discharge variability in vitro and in vivo in cat visual cortex neurons. J. Neurophysiol. 1996, 75, 1806–1814.
  • [37] Zijdewind I., Thomas C. K.: Firing patterns of spontaneously active motor units in spinal cord-injured subjects. J. Physiol. 2012, 590, 1683–1897.
  • [38] Eisen A., Schulzer M., MacNeil M., Pant B., Mak E.: Duration of amyotrophic lateral sclerosis is age dependent. Muscle Nerve 1993, 16, 27–32.
  • [39] Czaplinski A., Yen A. A., Appel S. H.: Amyotrophic lateral sclerosis: Early predictors of prolonged survival. J. Neurol. 2006, 253, 1428–1436.
  • [40] Schmied A., Attarian S.: Enhancement of single motor unit inhibitory responses to transcranial magnetic stimulation in amyotrophic lateral sclerosis. Exp. Brain Res. 2008, 189, 229–242.
  • [41] Kohara N., [Abnormal hyperexcitability in ALS]. Rinsho Shinkeigaku 1999, 39, 61–64.
  • [42] Kostera-Pruszczyk A., Niebroj-Dobosz I., Emeryk-Szajewska B., Karwanska A., Rowinska-Marcinska K.: Motor unit hyperexcitability in amyotrophic lateral sclerosis vs amino acids acting as neurotransmitters. Acta Neurol. Scand. 2002, 106, 34–38.
  • [43] Kuo J. J., Schonewille M., Siddique T., Schults A. N., Fu R., Bar P. R., Anelli R., Heckman C. J., Kroese A. B.: Hyperexcitability of cultured spinal motoneurons from presymptomatic ALS mice. J. Neurophysiol. 2004, 91, 571–575.
  • [44] Kuo J. J., Siddique T., Fu R., Heckman C. J.: Increased persistent na(+) current and its effect on excitability in motoneurones cultured from mutant SOD1 mice. J. Physiol. 2005, 563, 843–854.
  • [45] Schutz B.: Imbalanced excitatory to inhibitory synaptic input precedes motor neuron degeneration in an animal model of amyotrophic lateral sclerosis. Neurobiol. Dis. 2005, 20, 131–140.
  • [46] Avossa D., Grandolfo M., Mazzarol F., Zatta M., Ballerini L.: Early signs of motoneuron vulnerability in a disease model system: Characterization of transverse slice cultures of spinal cord isolated from embryonic ALS mice. Neuroscience 2006, 138, 1179–1194.
  • [47] Bories C., Amendola J., Lamotte d’Incamps B., Durand J.: Early electrophysiological abnormalities in lumbar motoneurons in a transgenic mouse model of amyotrophic lateral sclerosis. Eur. J. Neurosc. 2007, 25, 451–459.
  • [48] Quinlan K. A., Schuster J. E., Fu R., Siddique T., Heckman C. J.: Altered postnatal maturation of electrical properties in spinal motoneurons in a mouse model of amyotrophic lateral sclerosis. J. Physiol. (Lond) 2011, 589, 2245–2260.
  • [49] Mohajeri M. H., Figlewicz D. A., Bohn M. C.: Selective loss of alpha motoneurons innervating the medial gastrocnemius muscle in a mouse model of amyotrophic lateral sclerosis. Exp. Neurol. 1998, 150, 329–336.
  • [50] Frey D., Schneider C., Xu L., Borg J., Spooren W., Caroni P.: Early and selective loss of neuromuscular synapse subtypes with low sprouting competence in motoneuron diseases. J. Neurosci. 2000, 20, 2534–2542.
  • [51] Hegedus J., Putman C. T., Tyreman N., Gordon T.: Preferential motor unit loss in the SOD1 G93A transgenic mouse model of amyotrophic lateral sclerosis. J. Physiol. (Lond) 2008, 586, 3337–3351.
  • [52] Totosy de Zepetnek J. E., Zung H. V., Erdebil S., Gordon T.: Motor-unit categorization based on contractile and histochemical properties: A glycogen depletion analysis of normal and reinnervated rat tibialis anterior muscle. J. Neurophysiol. 1992, 67, 1404–1415.
  • [53] Gordon T., Hegedus J., Tam S. L.: Adaptive and maladaptive motor axonal sprouting in aging and motoneuron disease. Neurol. Res. 2004, 26, 174–185.
  • [54] Piotrkiewicz M.: Modelling of motoneuronal rhythmic activity. Biocyber. Biomed. Eng. 2001, 21, 53–75.
  • [55] Meehan C. F., Moldovan, M., Marklund S. L., Graffmo K. S., Nielsen J. B., Hultborn H.: Intrinsic properties of lumbar motor neurones in the adult G127insTGGG superoxide dismutase-1 mutant mouse in vivo: Evidence for increased persistent inward currents. Acta Physiol. 2010, 200, 361–376.
  • [56] Piotrkiewicz M., Hausmanowa-Petrusewicz I.: Motoneuron afterhyperpolarisation duration in amyotrophic lateral sclerosis. J. Physiol. (Lond) 2011, 589, 2745–2754.
  • [57] Young J. L., Mayer R. F.: Physiological alterations of motor units in hemiplegia. J. Neurol. Sci. 1982, 54, 401–412.
  • [58] Gemperline J., Allen S., Walk D., Rymer W.: Characteristics of motor unit discharge in subjects with hemiparesis. Muscle Nerve 1995, 18, 1101–1114.
  • [59] Frontera W. R., Grimby L., Larsson L.: Firing rate of the lower motoneuron and contractile properties of its muscle fibers after upper motoneuron lesion in man. Muscle Nerve 1997, 20, 938–947.
  • [60] Andreassen S., Rosenfalck A.: Impaired regulation of the firing pattern of single motor units. Muscle Nerve 1978, 1, 416–418.
  • [61] Sun T. Y., Chen J. J., Lin T. S.: Analysis of motor unit firing patterns in patients with central or peripheral lesions using singular-value decomposition. Muscle Nerve 2000, 23, 1057–1068.
  • [62] Liang L.-Y., Chen J.-J.J., Wang Y.-L., Jakubiec M., Mierzejewska J., Piotrkiewicz M.: Changes In spinal motoneuron “fastness” in post-stroke spastic patients. J. Med. Biol. Eng. 2010, 30, 17–22.
  • [63] Marsden C. D., Meadows J. C., Merton P. A.: “Muscular wisdom” that minimizes fatigue during prolonged effort in man: Peak rates of motoneuron discharge and slowing of discharge during fatigue. Adv. Neurol. 1983, 39, 169–211.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ6-0002-0026
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.