PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Motor unit contractions evoked by stimulation with variable interpulse intervals

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
During natural contractions motor units (MUs) are activated by variable frequency discharge patterns of motoneurones. The aim of this review was (1) to discuss differences between tetanic contractions developed at constant and random frequencies of pulses; (2) to show results of mathematical decomposition of these tetani into series of twitch-shaped responses to individual pulses; (3) to indicate that it is possible to predict the tetanic force of a MU with high accuracy by using regression equations derived on a basis of the relationships between the parameters of the decomposed twitches and the force level at which the next response begins.
Słowa kluczowe
Twórcy
autor
autor
  • Departament of Neurobiology, University School of Physical Education, ul. Królowej Jadwigi 27/39, 61-871 Poznań, Poland, krutki@awf.poznan.pl
Bibliografia
  • [1] Adam A., DeLuca C., Erim Z.: Hand dominance and motor unit firing behavior. J. Neurophysiol. 1998, 80, 1373–1382.
  • [2] Boe S.G., Stashuk D.W., Brown W.F., Doherty T.J.: Decomposition-based quantitative electromyography: effect of force on motor unit potentials and motor unit number estimates. Muscle Nerve, 2005. 31, 365–373.
  • [3] Convit R.A., Stashuk D., Tracy B., McHugh M., Brown W.F., Metter E.J.: The relationship of motor unit size, firing rate and force. Clin. Neurophysiol. 1999, 110, 1270–1275.
  • [4] Masakado Y., Akaboshi K., Nagata M., Kimura A., Chino N.: Motor unit firing behavior in slow and fast contractions of the first dorsal interosseous muscle of healthy men. Electroencephalogr. Clin. Neurophysiol. 1995, 97, 290–295.
  • [5] Masuda T., DeLuca C.: Recruitment threshold and muscle fiber conduction velocity of single motor units. J. Electromyogr. Kinesiol. 1991, 2, 116–123.
  • [6] Moritz C.T., Barry B.K., Pascoe M.A., Enoka,R.M.: Discharge rate variability influences the variation in force fluctuations across the working range of a hand muscle. J. Neurophysiol. 2005, 93, 2449–2459.
  • [7] Nakamura H., Yoshida M., Kotani M., Akazawa K., Moritani T.: The application of independent component analysis to the multi-channel surface electromyographic signals for separation of motor unit action potential trains: part I – measuring techniques. J. Electromyogr. Kinesiol. 2004, 14, 423–432.
  • [8] Person S., Kudina L.P.: Discharge frequency and discharge pattern of human motor units during voluntary contraction of muscle. Electroencephal. Clin. Neurophysiol. 1972, 32, 471–483.
  • [9] Hennig R., Lomo T.: Gradation of force output in normal fast and slow muscles of the rat. Acta Physiol. Scand. 1987, 130. 133–142.
  • [10] Enoka R.M., Robinson G.A., Kossev A.R.: Task and fatigue effects on low-threshold motor units in human hand muscle. J. Neurophysiol. 1989, 62, 1344–1359.
  • [11] De Luca C.J., Erim Z.: Common drive of motor units in regulation of muscle force. Trends Neurosci. 1994, 17, 299–304.
  • [12] Grimby L., Hannerz J., Hedman B.: Contraction time and voluntary discharge properties of individual short toe extensor motor units in man. J. Physiol. 1979, 289, 159–201.
  • [13] Nordstrom M.A., Miles T.S., Veale J.L.: Effect of motor unit firing pattern on twitches obtained by spike-triggered averaging. Muscle Nerve 1989, 12, 556–567.
  • [14] Binder-Macleod S.A., Clamann P.H.: Force output of cat motor units stimulated with trains of linearly varying frequency. J. Neurophysiol. 1989, 61, 208–217.
  • [15] Powers R.K., Binder M.D.: Effects of low frequency of stimulation on the tension-frequency relations of fast-twitch motor units of the cat. J. Neurophysiol. 1991, 66, 905–918.
  • [16] Binder-Macleod S.A., Barrish W.J.: Force response of rat soleus muscle to variable-frequency train stimulation. J. Neurophysiol. 1992, 68. 1068–1078.
  • [17] Grottel K., Celichowski J.: The influence of changes in the stimulation pattern on force and fusion in motor units of the rat medial gastrocnemius muscle. Exp. Brain Res. 1999, 127, 298–306.
  • [18] Celichowski J., Bichler E.: The influence of increasing and decreasing frequency of stimulation on the contraction of motor units in rat medial gastrocnemius muscle. J. Physiol. Pharmacol. 2000, 514, 847–855.
  • [19] Burke R.E., Rudomin P., Zajac F.E.: Catch property in single mammalian motor units. Science 1970, 168, 122–124.
  • [20] Burke R.E., Rudomin P., Zajac F.E.: The effect of activation history on the tension production by the individual muscle units. Brain Res. 1976, 109, 515–529.
  • [21] De Ruiter C.J., De Haan A., Sargeant A.J.: Fast-twitch muscle unit properties in different rat medial gastrocnemius muscle compartments. J. Neurophysiol. 1996, 75, 2243–2254.
  • [22] Krutki P., Pogrzebna M., Drzymała H., Raikova R. T., Celichowski J.: Force generated by fast motor units of the rat medial gastrocnemius muscle during stimulation with pulses at variable intervals. J. Physiol. Pharmacol. 2008, 59, 85–100.
  • [23] Celichowski J., Raikova R.T., Drzymała-Celichowska H., Ciechanowicz-Kowalczyk I., Krutki P.: Model-generated decomposition of unfused tetani of motor units evoked by random stimulation. J. Biomech. 2008, 41, 3448–3454.
  • [24] Raikova R., Rusev R., Drzymała-Celichowska H., Krutki P., Aladjov H., Celichowski J.: Experimentally verified mathematical approach for the prediction of force developed by motor units at variable frequency stimulation patterns. J. Biomech. 2010, 43, 1546–1552.
  • [25] Celichowski J., Pogrzebna M., Raikova R.T.: Analysis of the unfused tetanus course in fast motor units of the rat medial gastrocnemius muscle. Archiv. Ital. Biol. 2005, 143, 51–63.
  • [26] Celichowski J., Grottel K.: The dependence of the twitch course of medial gastrocnemius muscle of the rat and its motor units on stretching of the muscle. Arch. Ital. Biol. 1992;, 130, 315–325.
  • [27] Burke R.E., Levine D.N., Tsairis P., Zajac F.E.: Physiological types and histochemical profiles in motor units of the cat gastrocnemius. J. Physiol. 1973, 234, 723–748.
  • [28] Grottel K., Celichowski J.: Division of motor units in medial gastrocnemius muscle of the rat in the light of variability of their principal properties. Acta Neurobiol. Exp. 1990, 50. 571:588.
  • [29] Kernell D., Eerbeek O., Verhey B.A.: Relation between isometric force and stimulus rate in cat’s hindlimb motor units of different twitch contraction time. Exp. Brain Res. 1983, 50, 220–227.
  • [30] Raikova R.T., Pogrzebna M., Drzymała H., Celichowski J., Aladjov H.: Variability of successive contractions subtracted from unfused tetanus of fast and slow motor units. J. Electromyogr. Kinesiol. 2008, 18, 741–751.
  • [31] Tansey K.E., Botterman B.R.: Activation of type-identified motor units during centrally evoked contractions in the cat medial gastrocnemius muscle. II. Motoneuron firing-rate modulation. J. Neurophysiol. 1996, 75, 38–50.
  • [32] Erim Z., De Luca C., Mineo K., Aoki T.: Rank-ordered regulation of motor units. Muscle Nerve 1996, 19, 563–573.
  • [33] Tansey K.E., Yee A.K., Botterman B.R.: Activation of type-identified motor units during centrally evoked contractions in the cat medial gastrocnemius muscle. III. Muscle-unit force modulation. J. Neurophysiol. 1996, 75, 51–59.
  • [34] Mrowczyński W., Celichowski J., Krutki P.: Interspecies differences in the force-frequency relationship of the medial gastrocnemius motor units. J. Physiol. Pharmacol. 2006, 57, 491–501.
  • [35] Indurthy M., Griffin L.: Effect of random interpulse interval modulation on neuromuscular fatigue. Muscle Nerve 2007, 36, 807–815.
  • [36] Kebaetse M.B., Lee S.C.K., Binder-Macleod S.A.: A novel stimulation pattern improves performance during repetitive dynamic contractions. Muscle Nerve 2001, 24, 744–752.
  • [37] Laouris Y., Bevan L., Reinking R.M., Stuart D.G.: Associations between force and motor units of a cat hindlimb muscle. Canad. J. Physiol. Pharmacol. 2004, 82, 577–588.
  • [38] Matsuoka A.J., Abbas P.J., Rubinstein J.T., Miller C.A.: The neuronal response to electrical constant amplitude pulse train stimulation: evoked compound action potential recordings. Hear. Res. 2000, 149, 115–128.
  • [39] van Lunteren E., Sankey C.B.: Catchlike property of rat diaphragm: subsequent train frequency effects in variable-train stimulation. J. Appl. Physiol. 2000, 88, 586–598.
  • [40] Celichowski J., Grottel K., Bichler E.: The area under the record of contractile tension: estimation of work performed by contracting motor unit. Acta Neurobiol. Exp. 1998, 58, 165–168.
  • [41] Celichowski J., Grottel K., Bichler E.: Relationship betwen the tension-time area and the frequency of stimulation in motor units of the rat medial gastrocnemius muscle. J. Physiol. Pharmacol. 2000, 51, 2: 291–302.
  • [42] Enoka R.M.: Neuromechanics of human movement, Human Kinetics, USA, 2002.
  • [43] Zajac F.E., Young J.L.: Discharge properties of hind-limb motoneurons in decerebrate cats during locomotion induced by mesencephalic stimulation. J. Neurophysiol. 1980, 43, 1221–1235.
  • [44] MacIntosh B.R., Jones D., Devrome AN., Rassier D.E.: Prediction of summation in incompletely fused tetanic contractions of rat muscle. Journal of Biomechanics 2007, 40, 1066–1072.
  • [45] Stein R.B., Parmiggiani F.: Optimal motor patterns for activating mammalian muscle. Brain Res. 1979, 175, 372–376.
  • [46] Stein R.B., Parmiggiani F.: Nonlinear summation of contractions in cat muscles. I. Early depression. J. Gen. Physiol. 1981,78, 277–293.
  • [47] Raikova R.T., Celichowski J., Pogrzebna M., Aladjov H., Krutki P.: Modeling of summation of individual twitches into unfused tetanus for various types of rat motor units. J. Electromyogr. Kinesiol. 2007, 17, 121–130.
  • [48] Raikova R.T., Pogrzebna M., Drzymała H., Celichowski J., Aladjov H.: Variability of successive contractions subtracted from unfused tetanus of fast and slow motor units. J. Electromyogr. Kinesiol. 2008, 18, 741–751.
  • [49] Beck T.W., Housh T.J., Johnson G.O., Cramer J.T., Weir J.P., Coburn J.W., Malek M.H.: Does the frequency content of the surface mechanomyographic signal reflect motor unit firing rates? A brief review. J. Electromyogr. Kinesiol. 2007, 17, 1–13.
  • [50] Chou L-W., Binder-Macleod S.A.: The effects of stimulation frequency and fatigue on the forceintensity relationship for human skeletal muscle. Clin. Neurophysiol. 2007, 118, 1387–1396.
  • [51] Giroux-Metges M.A., Pennec J.P., Petit J., Goanvec C., Dorange G., Gioux M.: Motor unit properties in the soleus muscle after its distal tendon transfer to the plantaris muscle tendon in the rat. Physiol. Soc. 2003, 553, 925–933.
  • [52] Huijing P.A., Langenberg R.W., Meesters J.J., Baan G.C.: Extramuscular myofascial force transmission also occurs between synergistic muscles and antagonistic muscles. J. Electromyogr. Kinesiol. 2007, 17, 680–689.
  • [53] Rijkelijkhuizen J.T., Meijer H.J.M., Baan G.C., Huijing P.A.: Myofascial force transmission also occurs between antagonistic muscle located within opposite compartments of the rat lower hind limb. J. Electromyogr. Kinesiol. 2007, 21, 690–697.
  • [54] Vydevska-Chichova M., Mileva K., Radicheva N.: Differential changes in myoelectric characteristics of slow and fast fatigable frog muscle fibres during long-lasting activity. J. Electromyogr. Kinesiol. 2007, 17, 131–141.
  • [55] Piotrkiewicz M., Celichowski J.: Tetanic potentiation in motor units of rat medial gastrocnemius. Acta Neurobiol. Exp. 2007, 67, 35–42.
  • [56] Wexler A.S., Ding J., Binder-Macleod S.A.: A mathematical model that predicts skeletal muscle force. Transact. Biomed.l Engin. 1997, 40, 337–348.
  • [57] Lim K.Y., Thomas C.K., Rymer W.Z.: Computational methods for improving estimates of motor unit twitch contraction properties. Muscle Nerve 1995, 18, 165–174.
  • [58] Fuglevand A.J., Winter D.A., Patla A.E.: Models of recruitment and rate coding organization in motor-unit pools. J. Neurophysiol. 1993, 70, 2470–2488.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ6-0002-0025
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.