PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Here we review the state of the art using saccadic eye movements as windows to the function of the normal brain and of the abnormal brain plagued by disease or trauma. By combining sophisticated behavioral paradigms with rigorous mathematical analysis and the latest imaging techniques one can use saccades as biomarkers of the highest level decision making to the lowest level basic machinery that generates premotor saccade commands. As technology advances saccades will become even more useful as immediate monitors of the state of the brain in disease and trauma and as a way to evaluate therapies.
Twórcy
autor
  • Departament of Neurology, Ophthalmology, Otolaryngology-Head and Neck Surgery, Neuroscience, Path 2-210, the Johns Hopkins Hospital, 600 N. Wolfe Street Baltimore, MD 21287, USA, dzee@jhu.edu
Bibliografia
  • [1] Muri R. M., Nyffeler T.: Neurophysiology and neuroanatomy of reflexive and volitional saccades as revealed by lesion studies with neurological patients and transcranial magnetic stimulation (TMS). Brain Cogn. 2008, 68, 284-292.
  • [2] Leigh R. J., Zee D. S.: The Neurology of Eye Movements, Fouirth ed. New York: Oxford University Press, 2006.
  • [3] Ramat S., Leigh R. J., Zee D. S., Optican L. M.: What clinical disorders tell us about the neural control of saccadic eye movements. Brain 2007, 130, 10-35.
  • [4] McDowell J. E., Dyckman K. A., Austin B. P., Clementz B. A.: Neurophysiology and neuroanatomy of reflexive and volitional saccades: evidence from studies of humans. Brain Cogn. 2008, 68, 255-270.
  • [5] Sweeney J. A., Luna B., Keedy S. K., McDowell J. E., Clementz B. A.: fMRI studies of eye movement control: investigating the interaction of cognitive and sensorimotor brain systems. Neuroimage 2007, 36 Suppl 2, T54-T60.
  • [6] Anderson E. J., Jones D. K., O'Gorman R. L., Leemans A., Catani M., Husain M.: Cortical Network for Gaze Control in Humans Revealed Using Multimodal MRI. Cereb. Cortex 2011, published on line Jun 21, 2011.
  • [7] Tian J., Ethier V., Shadmehr R., Fujita M., Zee D. S.: Some perspectives on saccade adaptation. Ann. NY Acad Sci 2009, 1164, 166-172.
  • [8] Iwamoto Y., Kaku Y.: Saccade adaptation as a model of learning in voluntary movements. Exp. Brain Res. 2010. Jul, 204, 145-162.
  • [9] Pelisson D., Alahyane N., Panouilleres M., Tilikete C.: Sensorimotor adaptation of saccadic eye movements. Neurosc. Biobehav. Rev. 2010, 34, 1103-1120.
  • [10] Schubert M. C., Zee D. S.: Saccade and vestibular ocular motor adaptation. Restor. Neurol. Neurosc. 2010, 28, 9-18.
  • [11] Klein C., Rauh R., Biscaldi M.: Patterns of change in ocular motor development. Exp. Brain Res. 2011, 210, 33-44.
  • [12] Wong A. L., Shelhamer M.: Sensorimotor adaptation error signals are derived from realistic predictions of movement outcomes. J. Neurophysiol. 2011, 105, 1130-1140.
  • [13] Tian J., Zee D. S.: Context-specific saccadic adaptation in monkeys. Vision Res. 2010, 50, 2403-2410.
  • [14] Eggers S. D., De P. N., Walker M. F., Shelhamer M., Zee D. S.: Short-term adaptation of the VOR: non-retinal-slip error signals and saccade substitution. Ann. N Y Acad. Sci 2003, 1004, 94-110.
  • [15] Robinson D. A.: The use of control systems analysis in the neurophysiology of eye movements. Ann. Rev. Neurosc. 1981, 4, 463-503.
  • [16] Zee D. S., Optican L. M., Cook J. D., Robinson D. A., Engel W. K.: Slow saccades in spinocerebellar degeneration. Arch. Neurol. 1976, 33, 243-251.
  • [17] Geiner S., Horn A. K., Wadia N. H., Sakai H., Buttner-Ennever J. A.: The neuroanatomical basis of slow saccades in spinocerebellar ataxia type 2 (Wadia-subtype). Prog. Brain Res. 2008, 171, 575-581.
  • [18] Zee D. S., Robinson D. A.: A hypothetical explanation of saccadic oscillations. Ann. Neurol. 1979, 5, 405-414.
  • [19] Shaikh A. G., Ramat S., Optican L. M., Miura K., Leigh R. J., Zee D. S.: Saccadic burst cell membrane dysfunction is responsible for saccadic oscillations. J. Neuroophthalmol. 2008, 28, 329-336.
  • [20] Ramat S., Leigh R. J., Zee D. S., Optican L. M.: Ocular oscillations generated by coupling of brainstem excitatory and inhibitory saccadic burst neurons. Exp. Brain Res. 2005, 160, 89-106.
  • [21] Miura K., Optican L. M.: Membrane channel properties of premotor excitatory burst neurons may underlie saccade slowing after lesions of omnipause neurons. J. Comput. Neurosc. 2006, 20, 25-41.
  • [22] Shaikh A. G., Wong A. L., Optican L. M, Miura K., Solomon D., Zee D. S.: Sustained eye closure slows saccades. Vision Res. 2010, 50, 1665-1675.
  • [23] Ramat S., Somers J. T., Das V. E., Leigh R. J.: Conjugate ocular oscillations during shifts of the direction and depth of visual fixation. Invest. Ophthalmol. Vis. Sc. 1999, 40, 1681-1686.
  • [24] Shaikh A. G., Miura K., Optican L. M., Ramat S., Leigh R. J., Zee D. S.: A new familial disease of saccadic oscillations and limb tremor provides clues to mechanisms of common tremor disorders. Brain 2007, 130, 3020-3031.
  • [25] Serra A., Liao K., Martinez-Conde S., Optican L. M., Leigh R. J.: Suppression of saccadic intrusions in hereditary ataxia by memantine. Neurology 2008, 70, 810-812.
  • [26] Hallett P. E.: Primary and secondary saccades to goals defined by instructions. Vision Res. 1978, 18, 1279-1296.
  • [27] Hikosaka O., Wurtz R. H.: Visual and oculomotor functions of monkey substantia nigra pars reticulata. III. Memory-contingent visual and saccade responses. J. Neurophysiol. 1983, 49, 1268-1284.
  • [28] Hallett P. E., Lightstone A. D.: Saccadic eye movements to flashed targets. Vision Res. 1976, 16, 107-114.
  • [29] Braun D., Breitmeyer B. G.: Relationship between directed visual attention and saccadic reaction times. Exp. Brain Res. 73, 546-552.
  • [30] Guitton D., Buchtel H. A., Douglas R. M.: Frontal lobe lesions in man cause difficulties in suppressing reflexive glances and in generating goal-directed saccades. Exp. Brain Res. 1985, 58, 455-472.
  • [31] DeJong J. D., Jones G. M.: Akinesia, hypokinesia, and bradykinesia in the oculomotor system of patients with Parkinson's disease. Exp. Neurol. 1971, 32, 58-68.
  • [32] Lasker A. G., Zee D. S.: Ocular motor abnormalities in Huntington's disease. Vision Res. 1997, 37, 3639-3645.
  • [33] Tsai T. T., Lasker A., Zee D. S.: Visual attention in Huntington's disease: the effect of cueing on saccade latencies and manual reaction times. Neuropsychologia 1995, 33, 1617-1626.
  • [34] Funahashi S., Bruce C. J., Goldman-Rakic P. S.: Dorsolateral prefrontal lesions and oculomotor delayed-response performance: evidence for mnemonic "scotomas". J. Neurosc. 1993, 13, 1479-1497.
  • [35] Funahashi S., Chafee M. V., Goldman-Rakic P. S.: Prefrontal neuronal activity in rhesus monkeys performing a delayed anti-saccade task. Nature 1993, 365, 753-756.
  • [36] Joiner W. M., Shelhamer M.: A model of time estimation and error feedback in predictive timing behavior. J. Comput. Neurosc. 2009, 26, 119-138.
  • [37] Anderson A. J., Carpenter R. H.: Saccadic latency in deterministic environments: getting back on track after the unexpected happens. J. Vis. 2010, 10, 12.
  • [38] Antzoulatos E. G., Miller E. K.: Differences between neural activity in prefrontal cortex and striatum during learning of novel abstract categories. Neuron 2011, 71, 243-249.
  • [39] Carpenter R. H., Williams M. L.: Neural computation of log likelihood in control of saccadic eye movements. Nature 1995, 377, 59-62.
  • [40] Purcell B. A., Heitz R. P., Cohen J. Y., Schall J. D., Logan G. D., Palmeri T. J.: Neurally constrained modeling of perceptual decision making. Psychol. Rev. 2010, 117, 1113-1143.
  • [41] Schall J. D., Purcell B. A., Heitz R. P., Logan G. D., Palmeri T. J.: Neural mechanisms of saccade target selection: gated accumulator model of the visual-motor cascade. Eur. J. Neurosc. 2011, 33, 1991-2002.
  • [42] Watanabe M., Munoz D. P.: Saccade suppression by electrical microstimulation in monkey caudate nucleus. J. Neurosc. 2010, 30, 2700-2709.
  • [43] Story G. W., Carpenter R. H.: Dual LATER-unit model predicts saccadic reaction time distributions in gap, step and appearance tasks. Exp. Brain Res. 2009, 193, 287-296.
  • [44] Noorani I., Gao M. J., Pearson B. C., Carpenter R. H.: Predicting the timing of wrong decisions with LATER. Exp. Brain Res. 2011, 209, 587-598.
  • [45] Halliday J., Carpenter R. H.: The effect of cognitive distraction on saccadic latency. Perception 2010, 39, 41-50.
  • [46] Xu-Wilson M., Zee D. S., Shadmehr R.: The intrinsic value of visual information affects saccade velocities. Exp. Brain Res. 2009, 196, 475-481.
  • [47] Shadmehr R., Orban D. X. Xu-Wilson M., Shih T. Y.: Temporal discounting of reward and the cost of time in motor control. J. Neurosc. 2010, 30, 10507-10516.
  • [48] Mirsky J. B., Heuer H. W., Jafari A. et al.: Anti-saccade performance predicts executive function and brain structure in normal elders. Cogn. Behav. Neurol. 2011, 24, 50-58.
  • [49] Perneczky R., Ghosh B. C., Hughes L., Carpenter R. H., Barker R. A., Rowe J. B.: Saccadic latency in Parkinson's disease correlates with executive function and brain atrophy, but not motor severity. Neurobiol. Dis. 2011, 43, 79-85.
  • [50] Rupp J., Dzemidzic M., Blekher T. et al.: Comparison of vertical and horizontal saccade measures and their relation to gray matter changes in premanifest and manifest Huntington disease. J. Neurol. 2011 published on line Aug. 18. 2011.
  • [51] Herdman A. T., Ryan J. D.: Spatio-temporal brain dynamics underlying saccade execution, suppression, and error-related feedback. J. Cogn. Neurosc. 2007, 19, 420-432.
  • [52] Xu-Wilson M., Tian J., Shadmehr R., Zee D. S.: TMS perturbs saccade trajectories and unmasks an internal feedback controller for saccades. J. Neurosc. 2011, 31, 11537-11546.
  • [53] Vernet M., Yang Q., Kapoula Z.: Guiding Binocular Saccades during Reading: A TMS Study of the PPC. Front Hum. Neurosc. 2011, 5, 14.
  • [54] Yang Q., Kapoula Z.: Distinct control of initiation and metrics of memory-guided saccades and vergence by the FEF: a TMS study. PLoS One 2011, 6:e20322.
  • [55] Mosconi M. W., Kay M., D'Cruz A. M. et al.: Neurobehavioral abnormalities in first-degree relatives of individuals with autism. Arch. Gen. Psychiatry 2010, 67, 830-840.
  • [56] Stanley-Cary C., Rinehart N., Tonge B., White O., Fielding J.: Greater disruption to control of voluntary saccades in autistic disorder than Asperger's disorder: evidence for greater cerebellar involvement in autism? Cerebellum 2011, 10, 70-80.
  • [57] Robert M. P., Nachev P. C., Hicks S. L., Golding C. V., Tabrizi S. J., Kennard C.: Saccadometry of conditional rules in presymptomatic Huntington's disease. Ann. N Y Acad. Sci. 2009, 1164, 444-450.
  • [58] Kraus M. F., Little D. M., Wojtowicz S. M., Sweeney J. A.: Procedural learning impairments identified via predictive saccades in chronic traumatic brain injury. Cogn. Behav. Neurol. 2010, 23, 210-217.
  • [59] Nyffeler T., Hubl D., Wurtz P., Wiest R., Hess C. W., Muri R. M.: Spontaneous recovery of visually-triggered saccades after focal lesions of the frontal and parietal eye fields: a combined longitudinal oculomotor and fMRI study. Clin. Neurophysiol. 2011, 122, 1203-1210.
  • [60] Nouraei S. A., Roos J. C., Walsh S. R., Ober J. K., Gaunt M. E., Carpenter R. H.: Objective assessment of the hemisphere-specific neurological outcome of carotid endarterectomy: a quantitative saccadometric analysis. Neurosurgery 2010, 67, 1534-1541.
  • [61] Krismer F., Roos J. C., Schranz M. et al.: Saccadic latency in hepatic encephalopathy: a pilot study. Metab. Brain Dis. 2010, 25, 285-295.
  • [62] Walsh S. R., Nouraei S. A., Tang T. Y., Sadat U., Carpenter R. H., Gaunt M. E.: Remote ischemic preconditioning for cerebral and cardiac protection during carotid endarterectomy: results from a pilot randomized clinical trial. Vasc. Endovascular Surg. 2010, 44:434-439.
  • [63] Sawaguchi T., Goldman-Rakic P.: The role of D1-dopamine receptor in working memory: Local injections of dopamine antagonists into the prefrontal cortex of rhesus monkeys performing an oculomotor- delayed response task. J. Neurophys. 1994, 71, 515-528.
  • [64] Sumner P., Edden R. A., Bompas A., Evans C. J., Singh K. D.: More GABA, less distraction: a neurochemical predictor of motor decision speed. Nat. Neurosc. 2010, 13, 825-827.
  • [65] Kojima Y., Soetedjo R., Fuchs A. F.: Effects of GABA agonist and antagonist injections into the oculomotor vermis on horizontal saccades. Brain Res. 2010, 1366, 93-100.
  • [66] Phongphanphanee P., Mizuno F., Lee P. H., Yanagawa Y., Isa T., Hall W. C.: A circuit model for saccadic suppression in the superior colliculus. J. Neurosc. 2011, 31, 1949-1954.
  • [67] Kobayashi Y., Saito Y., Isa T.: Facilitation of saccade initiation by brainstem cholinergic system. Brain Dev. 2001, 23 Suppl 1, S24-S27.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ6-0002-0022
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.