PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Highly robust statistical methods in medical image analysis

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Standard multivariate statistical methods in medical applications are too sensitive to the assumption of multivariate normality and the presence of outliers in the data. This paper is devoted to robust statistical methods. In the context of medical image analysis they allow to solve the tasks of face detection and face recognition in a database of images. The results of the robust approaches in image analysis turn out to outperform those obtained with standard methods. Robust methods also have desirable properties appealing for practical applications, including dimension reduction and clear interpretability.
Twórcy
autor
  • Center of Biomedical Informatics, Institute of Computer Science AS CR, Pod Vodárenskou věži 2, CZ-182 07 Praha 8, Czech Republic, kalina@euromise.cz
Bibliografia
  • [1] Pearson K.: On lines and planes of closest fit to systems of points in space. Philosophical Magazine 1901, 2 (6), 559-572.
  • [2] Galton F.: Co-relations and their measurement, chiefly from anthropometric data. Proceedings of the Royal Society 1888, 45, 135-145.
  • [3] Stigler S. M.: Francis Galton's account of the invention of correlation. Statistical Science 1989, 4 (2), 73-79.
  • [4] Fisher R. A.: The use of multiple measurement in taxonomic problems. Annals of Eugenics 1936, 7, 179-188.
  • [5] Van Vark G. N., Howells W. W. (Eds): Multivariate statistical methods in physical anthropology. A review of recent advances and current developments. Reidel Publishing Company, Dordrecht 1984.
  • [6] Ramsay J. O., Silverman B. W.: Applied functional data analysis. Second edition. Springer, New York 2005.
  • [7] Kalina J.: Facial symmetry in robust anthropometrics. Journal of Forensic Sciences. Accepted, to appear in 2012.
  • [8] Zankl A.: Computer-aided anthropometry in the evaluation of dysmorphic children. Pediatrics 2004, 114 (3), 333-336.
  • [9] Böhringer S., Vollmar T., Tasse C., Würtz R. P., Gillessen-Kaesbach G., Horsthemke B., Wieczorek D.: Syndrome identification based on 2D analysis software. European Journal of Human Genetics 2006, 14, 1082-1089.
  • [10] Zvárová J., Hanzlíček P., Nagy M., Přečková P., Zvára K., Seidl L., Bureš V., Šubrt D., Dostálová T., Seydlová M.: Biomedical informatics research for individualized life-long shared healthcare. Biocybern. Biomed. Eng. 2009, 29 (2), 31-41.
  • [11] Bookstein F. L.: Morphometric tools for landmark data. Geometry and biology. Cambridge University Press, Cambridge 1991.
  • [12] Dryden I., Mardia K.: Statistical shape analysis. Wiley, Chichester 1998.
  • [13] Farkas L.: Anthropometry of the head and face. Raven Press, New York 1994.
  • [14] Hastie T., Tibshirani R., Friedman J.: The elements of statistical learning. Springer, New York 2001.
  • [15] Jurečková J., Picek J.: Robust statistical methods with R. Taylor & Francis, Boca Raton 2005.
  • [16] Stigler S. M.: The changing history of robustness. American Statistician 2010, 64 (4), 277-281.
  • [17] Heritier S., Cantoni E., Victoria-Feser M. P., Copt S.: Robust methods in biostatistics. Wiley, New York 2009.
  • [18] Kalina J.: Robust image analysis in the evaluation of gene expression studies. ERCIM News, European Research Consorcium for Informatics and Mathematics 2010, 82, 52.
  • [19] Kalina J.: Robust image analysis of faces for genetic applications. European Journal for Biomedical Informatics 2010, 6 (2): 6-13.
  • [20] Davies P. L., Gather U.: Breakdown and groups. Annals of Statistics 2005, 33 (3), 977-1035.
  • [21] Víšek J. Á.: The least weighted squares I. Bulletin of the Czech Econometric Society 2001, 9 (15), 1-28.
  • [22] Čížek P.: Semiparametrically weighted robust estimation of regression models. Computational Statistics and Data Analysis 2011, 55 (1), 774-788.
  • [23] Kalina J.: Some diagnostic tools in robust econometrics. Acta Universitatis Palackianae Olomucensis, Facultas Rerum Naturalium, Mathematica 2011, 50 (2), 55-67.
  • [24] Rousseeuw P. J., Leroy A. M.: Robust regression and outlier detection. Wiley, New York 1987.
  • [25] Rak R., Matyáš V., Říha Z. (Eds.): Biometrics and human identity in forensic and commercial applications. Grada Publishing, Prague 2008 (in Czech).
  • [26] Yang M. H., Kriegman J., Ahuja N.: Detecting faces in images: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 2002, 24 (1), 34-58.
  • [27] Kalina J.: Locating landmarks using templates. In Antoch J., Hušková M., Sen P. K. (Eds.): Nonparametrics and robustness in modern statistical inference and time series analysis. Institute of Mathematical Statistics, Beachwood 2010, 113-122.
  • [28] Loos H. S., Wieczorek D., Würtz R. P. Malsburg von der C., Horsthemke B.: Computer-based recognition of dysmorphic faces. European Journal of Human Genetics 2003, 11, 555-560.
  • [29] Enquist M., Arak A.: Symmetry, beauty and evolution. Nature 1994, 372, 169-172.
  • [30] Rousseeuw P. J., van Driessen K.: A fast algorithm for the minimum covariance determinant estimator. Technometrics 1999, 41 (3), 212-223.
  • [31] Hubert M., van Driessen K.: Fast and robust discriminant analysis. Computational Statistics and Data Analysis 2004, 45, 301-320.
  • [32] Todorov V., Pires A. M.: Comparative performance of several robust linear discriminant analysis methods. REVSTAT Statistical Journal 2007, 5, 63-83.
  • [33] Croux C., Haesbroeck G.: Principal component analysis based on robust estimators of the covariance or correlation matrix: influence functions and efficiencies. Biometrika 2000, 87, 603-618.
  • [34] Hubert M., Rousseeuw P. J., Vanden Branden K.: ROBPCA: A new approach to robust principal component analysis. Technometrics 2005, 47, 64-79.
  • [35] Härdle W., Simar L.: Applied multivariate statistical analysis. Second edition. Springer, New York 2007.
  • [36] Croux C., Filzmoser P., Oliveira M. R.: Algorithms for projection-pursuit robust principal component analysis. Chemometrics and Intelligent Laboratory Systems 2007, 87 (2), 218-225.
  • [37] Víšek J. Á.: Consistency of the least weighted squares under heteroscedasticity. Kybernetika 2011, 47 (2), 179-206.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ6-0002-0018
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.