PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Studies on the structure of semi-permeable membranes by means of SEM problems and potential sources of errors

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effect of sputtering with a conductor of the semi-permeable membranes surface on SEM pictures obtained is presented. On the example of photomicrographs of several different types of semi-permeable membranes, changes in the appearance of various membrane surfaces, uncovered and sputtered with thicker and thicker layers of the conductor are presented. It has been shown, how essential differences in the appearance of the studied material can be caused by the deposited conductor. It has been shown what errors in the interpretation of SEM images can be caused by applying the sputtered conductor layer with a thickness insufficient to the structure and properties of the studied material. Necessity of minimizing the layer thickness of the sputtered conductor and experimental determination of the sputtered layer thickness was found. Appropriateness of taking the pictures in the mode without sputtering and necessity of comparing the pictures with and without sputtering have been suggested. The useful way of carrying out magnifications' of membranes made of polymers of low melting points has been also presented.
Twórcy
autor
autor
autor
  • Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, ul. Księcia Trojdena 4, 02-109 Warsaw, Poland, achwoj@ibib.waw.pl
Bibliografia
  • [1] Meneghelloa G., Parker D. J., Ainsworthb B. J., Perera S. P., Chaudhuri J. B., Ellis M. J., De Bank P.A.: Fabrication and characterization of poly(lactic-co-glycolic acid)/polyvinyl alcohol blended hollow fibre membranes for tissue engineering applications. J. Membrane Sci. 2009, 344, 55-61.
  • [2] Eun-Sik Kim, Young Jo Kim, Qingsong Yu, Baolin Deng: Preparation and characterization of polyamide thin-film composite (TFC) membranes on plasma-modified polyvinylidene fluoride (PVDF). J. Membrane Sci. 2009, 344, 71-81.
  • [3] Susanto H., Stahra N., Ulbricht M.: High performance polyethersulfone microfiltration membranes having high flux and stable hydrophilic property. - J. Membrane Sci. 2009, 342, 153-164.
  • [4] Zhang, Z. B., Zhu X. L., Xu F. J., Neoh K. G., Kang E. T.: Temperature- and pH-sensitive nylon membranes prepared via consecutive surface-initiated atom transfer radical graft polymerizations. J. Membrane Sci. 2009, 342, 300-306.
  • [5] Jihee Moon, Moon-Sun Kang, Jae-Lim Lim Choong-Hwan Kim, Hee-Deung Park: Evaluation of a low-pressure membrane filtration for drinking water treatment: pretreatment by coagulation/sedimentation for the MF membrane. Desalination 2009, 247, 271-284.
  • [6] Jinwook Lee, Ji-Yeon Jung, Sungyoun Kim, In Seop Chang, Sambhu Saran Mitra, In S. Kim: Selection of the most problematic biofoulant in fouled RO membrane and the seawater intake to develop biosensors for membrane biofouling. Desalination 2009, 247, 125-136.
  • [7] Sanchuan Yu, Meihong Liu, Zhenhua Lü, Yong Zhou, Congjie Gao: Aromatic-cycloaliphatic polyamide thin-film composite membrane with improved chlorine resistance prepared from m-phenylenediamine-4-methyl and cyclohexane-1,3,5-tricarbonyl chloride. J. Membrane Sci. 2009, 344, 155-164.
  • [8] Haesook Kim, Hyun-Gi Kim, Sooyeon Kim, Sung Soo Kim: PDMS-silica composite membranes with silane coupling for propylene separation. J. Menbrane Sci. 2009, 344, 211-218.
  • [9] Pamuła E.: Biomaterials for tissue engineering (in Polish). Biomaterials Engineering 2008, vol. 1, Kraków.
  • [10] Hai-Yin Yu,Wei Li, Jin Zhou, Jia-Shan Gu, Lei Huang, Zhao-Qi Tang, Xian-WenWei: Thermo- and pH-responsive polypropylene microporous membrane prepared by the photoinduced RAFT-mediated graft copolymerization. J. Membrane Sci. 2009, 343, 82-89.
  • [11] Basu Subhankar, Maes Michael, Cano-Odena Angels, Alaerts Luc, De Vos Dirk E., Vankelecom Ivo F. J.: Solvent resistant nanofiltration (SRNF) membranes based on metal-organic frameworks. J. Membrane Sci. 2009, 344, 190-198.
  • [12] Osin Y. N., Makhotkina L. Y., Abutalipova L. N., Abdulin I. S. : SEM and X-ray analysis of surface microstructure of a natural leather processed in low temperature plasma. Vacuum 1998, 51, 221-225.
  • [13] Wavhal D. S., Fisher E. R.: Modification of polysulfone ultrafiltration membranes by CO2 plasma treatment. Desalination 2005, 172, 189-205.
  • [14] Gancarz I., Poźniak G., Bryjak M.: Modification of polysulfone membranes. 1. CO2 plasma treatment. Eur. Polym. J. 1999, 35, 1419-1428.
  • [15] Gancarz I., Poźniak G., Bryjak M.: Modyfication of polusulfone membranes. 3. Effect of nitrogen plasma. Eur. Polym. J. 2000, 36, 1563-1569.
  • [16] Bryjak M., Gancarz I., Poźniak G.: Modyfication of polusulfone membranes. 4. Ammonia plasma treatment. Eur. Polym. J. 2002, 38, 717-726.
  • [17] Kim K. S., Lee K. H., Cho K., Park C. E.: Surface modification of polysulfone ultrafiltration membrane by oxygen plasma treatment. J. Membrane Sci. 2002, 199, 135-145.
  • [18] Gancarz I., Poźniak G., Bryjak M.: Modification of polysulfone membranes. 2. Plasma grafting and plasma polymerization of acrylic acid. Acta Polym. 1999, 50, 317-326.
  • [19] Chen H., Belfort G.: Surface modification of poly(ether sulfone)ultrafiltration membranes by low-temperature plasma-induced graft polymerization. J. App. Polym. Sci. 1999, 72, 1699-1711.
  • [20] Wavhal D. S., Fisher E. R.: Hydrophilic modification of polyethersulfone membranes by low temperature plasma-induced graft polymerization. Journal of Membrane Science 2002, 209, 255-269.
  • [21] Kim H. I., Kim S. S.: Fabrication of reverse osmosis membrane via low temperature plasma polymerization. J. Membrane Sci. 2001, 190, 21-33.
  • [22] Buquet C. L., Fatyeyeva K., Poncin-Epaillard F., Schaetzel P., Dargent E., Langevin D., Nguyen Q. T., Marais S.: New hybrid membranes for fuel cells: Plasma treated laponite basedsulfonated polysulfone. J. Membrane Sci. 2010, 351, 1-10.
  • [23] Lewińska D., Rosiński S., Piątkiewicz W.: Pectin coated hollow fibre polypropylene membranes. Int. J. Artif. Organs 1997, 20(11), 650-655.
  • [24] Bacakova L., Stary V., Kofronova O., Lisa V.: Polishing and coating carbonfibre-reinforced carbon composites with a carbon-titanium layer enhances adhesion and growth of osteoplast like MG 63 cells and vascular smooth muscle cells in vitro. J Biomed. Mater Res. 2001, 54, 567-578.
  • [25] Shin H., Jo S., Mikos A. G.: Biometric materials for Tissue Engineering. Biomaterials 2003, 24, 4353-4364.
  • [26] Chwojnowski A., Wojciechowski C., Dudziński K., Łukowska E.: Polysulphone and polyethersulphone hollow fiber membranes with developed inner surface as material for bio-medical applications. Biocybernetics and Biomedical Engineering 2009, 29, 3, 47-59.
  • [27] Chwojnowski A., Dudziński K.: Wide-porous scafold for 3D cell cultivation. Patent Application (in Polish) PL P-379880. June 6 2006.
  • [28] Lewińska D., Chwojnowski A., Jankowska-Śliwińska J., Weryński A.: Microcapsules containing biological actives substances, especially living cells and / or microorganisms eventually genetic modified or natural for biomedical applications. Method they preparation and devices for these method application. Patent application (in Polish) PL P-208383. Nov. 15. 2007.
  • [29] Kupikowska B., Lewińska D., Dudziński K., Jankowska-Śliwińska J., Grzeczkowicz M., Wojciechowski C., Chwojnowski A.: The influence of changes in the composition of the membrane-forming solution on the structure of alginate-polyethersulfone microcapsules. Biocybernetics and Biomedical Engineering 2009, 29, 3, 61-69.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ6-0002-0017
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.