Tytuł artykułu
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The application of spectroscopic study, microscopic and AFM imaging for examination of fiberoptic applicators is presented. The potential carriers of photoactive agents for photodynamic medicine in form of sol-gel coatings of fiberoptic applicators, are proposed. Optical and morphological properties of the proposed sol-gel coatings doped with photosensitizer Photolon, are characterized. The influence of pH and oxygen changes on entrapped Photolon properties, was examined, as well. The morphology of the applicator coating was examined by using atomic force microscopy. The light distribution from an applicator was studied by means of computer aided image analysis.
Wydawca
Czasopismo
Rocznik
Tom
Strony
41--50
Opis fizyczny
Bibliogr. 32 poz., rys., wykr.
Twórcy
autor
autor
autor
autor
autor
- Institute of Biomedical Engineering and Instrumentation Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland, marta.kopaczynska@pwr.wroc.pl
Bibliografia
- [1] Pucińska J., Podbielska H.: Nanomaterials in supporting photodynamic (in Polish). Acta Bio-Optica et Informatica Medica, Inżynieria Biomedyczna 2009, 15 (2), 178-181.
- [2] Atkinson R. L., Zhang M., Diagaradjane P., Peddibhotla S., Contreras A., Hilsenbeck S. G., Woodward W. A., Krishnan S., Chang J. C., Rosen J. M.: Thermal enhancement with optically activated gold nanoshells sensitizes breast cancer stem cells to radiation therapy. Science Translational Medicine 2010, 2 (55), 55-79.
- [3] Leong, H. S., Steinmetz N. F., Ablack, A., Manchester, M., Lewis, J. D.: Viral nanoparticles as a platform for intravital imaging of embryonic and tumour neovasculature. Nature Protocols 2010, 5 (8), 1406-1417.
- [4] Steinmetz, N. F.: Viral nanoparticles as platforms for next generation therapeutics and imaging devices. Nanomedicine NBM 2010, 6(5), 634-641.
- [5] Soto C. M., Szuchmacher-Blum A., Lebedev N., Vora G. J., Meador C. E., Won A. P., Chatterji A., Johnson J. E., Ratna B. R.: Fluorescent signal amplification of carbocyanine dyes using engineered viral nanoparticles. Journal of the American Chemical Society 2006, 128, 5184-1593.
- [6] Wawrzyńska M., Kałas W., Biały D., Zioło E., Arkowski J., Mazurek W., Strządała L.: In vitro photodynamic therapy with Chlorin e6 leads to apoptosis of human vascular smooth muscle cells. Arch. Immunol. Ther. Exp. 2010, 58, 67-75.
- [7] Karotki A.: Simultaneous two-photon absorption of tetrapyrrolic molecules: from femtosecond coherence experiments to photodynamic therapy. Ph.D. Dissertation, Montana State University, Bozeman, Montana, 2003.
- [8] Web site: www.belmedpreparaty.com.
- [9] Podbielska H., Stręk W., Dereń P., Bednarkiewicz A.: New approach to PDT with chlorophylle based photosensitizer and semiconductor laser. Physica Medica 2004, 20, 61-68.
- [10] Ulatowska-Jarża A., Kaczkowska K., Czernielewski L., Kopaczyńska M., Podbielska H.: Towards the dosimetry in photodynamic medicine - in vitro estimation of minimal photosensitizer dose for photodynamic diagnosis. In: Z. Drzazga and K. Ślosarek (Eds.), Some aspects of medical physics - in vivo and in vitro studies, Hard Publishing Company, Olsztyn 2010, 71-77.
- [11] Czernielewski L., Ulatowska-Jarża A., Kaczkowska K., Podbielska H.: Metrological aspects of medical photodynamic diagnostics. In: J. Jakubiec, Z. Morń, H. Juniewicz (Eds.), Metrology today and tomorrow (in Polish). Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2010, 397-404.
- [12] Zhang L., Gu F. X., Chan J. M., Wang A. Z., Langer R. S., Farokhzad O. C.: Nanoparticles in medicine: therapeutic applications and developments. Clinical Pharmacology & Therapeutics 2008, 83, 761-769.
- [13] Petros R. A., DeSimone J. M.: Strategies in the design of nanoparticles for therapeutic applications. Nature Reviews Drug Discovery 2010, 9, 615-627.
- [14] Peer D., Karp J. M., Hong S., Farokhzad O. C., Margalit R., Langer R.: Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology 2007, 2, 751-760.
- [15] Farokhzad O. C., Langer R.: Nanomedicine: developing smarter therapeutic and diagnostic modalities. Advanced Drug Delivery Review 2006, 58, 1456-1459.
- [16] Chen Y., Bose A., Bothun G. D.: Controlled release from bilayer-decorated magnetoliposomes via electromagnetic heating. ACS Nano 2010, 4 (6), 3215-3221.
- [17] Kshirsagar N. A.: Drug delivery systems. Indian Journal of Pharmacology 2000, 32, S54-S61.
- [18] Goyal P., Goyal K., Kumar S. G. V., Singh A., Katare O. P., Mishra D. N.: Liposomal drug delivery systems - Clinical applications. Acta Pharm. 2005, 551-25.
- [19] Liu Y., Miyoshi H., Nakamura M.: Nanomedicine for drug delivery and imaging: a promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles. Int. J. Cancer 2007, 120, 2527-2537.
- [20] Barbieri D., Renard A. J. S., de Bruijn J. D., Yuan H.: Heterotopic bone formation by nano-apatite containing poly(D,L-lactide) composites. European Cells and Materials 2010, 19, 252-261.
- [21] Stringer M., Moghissi K.: Photodiagnosis and fluorescence imaging in clinical practice. Photodiagnosis and Photodynamic Therapy 2004, 1, 9-12.
- [22] Trukhachova T. V., Shliakhtsin S. V., Isakov G. A., Istomin Y. P.: Photolon (Fotolon) - a novel photosensitizer for photodynamic therapy. A review of physical, chemical, pharmacological and clinical data. Minsk, 2008.
- [23] Copley L., van der Watt P., Wirtz K. W., Parker I. M., Leaner V. D.: PhotolonTM, a chlorin e6 derivative, triggers ROS production and light-dependent cell death via necrosis. The International Journal of Biochemistry & Cell Biology 2008, 40, 227-235.
- [24] Chin W. W. L., Lau W. K. O., Bhuvaneswari R., Heng P. W. S., Olivo M.: Chlorin e6-polyvinylpyrrolidone as a fluorescent marker for fluorescence diagnosis of human bladder cancer implanted on the chick chorioallantoic membrane model. Cancer Letters 2007, 245, 127-133.
- [25] Parkhots M. V., Knyukshto V. N., Isakov G. A., Petrov P. T., Lepeshkevich S. V., Khairullina A. Ya., and Dzhagarov B. A.: Spectral-luminescent studies of the Photolon photosensitizer in model media and in blood of oncological patients. Journal of Applied Spectroscopy 2003, 70 (6), 921-926.
- [26] Chin W. W. L., Thong P. S. P., Bhuvaneswari R., Soo K. C., Heng P. W. S. and Olivo M.: In-vivo optical detection of cancer using chlorin e6-polyvinylpyrrolidone induced fluorescence imaging and spectroscopy. BMC Medical Imaging 2009, 9 (1), http://www.biomedcentral.com/1471-2342/9/1.
- [27] Kopaczynska M., Wang T., Schulz A., Dudic M., Casnati A., Sansone F., Ungaro R., Fuhrhop J.H.: Scanning Force Microscopy of Upright-Standing, Isolated Caliksarene - Porphyrin Heterodimers. Langmuir 2005, 21(18), 8460-8465.
- [28] Kopaczynska M., Lauer M., Schulz A., Wang T., Schaefer A., Fuhrhop J. H.: Aminoglycoside antibiotics aggregate to form starch-like fibers on negatively charged surfaces and on Phage \lambda-DNA. Langmuir 2004, 20, 9270-9275.
- [29] LeeS. K., Okura I.:Porphyrin-doped sol-gel glass as a probe for oxygen sensing. Analytica Chimica Acta 1997,342, 181-188.
- [30] Wencel D., Higgins C., Klukowska A., Maccraith B. D., Mcdonagh C.: Novel sol-gel derived films for luminescence-based oxygen and pH sensing. Materials Science-Poland 2007, 25, (3), 767-779.
- [31] Wold J. P., Dahl A. V., Lundby F. N., Asgeir N. J., Asta M.: Effect of Oxygen Concentration on Photo-oxidation and Photosensitizer Bleaching in Butter. Photochemistry and Photobiology 2009, 28 (3), 669-676.
- [32] Dietel W., Pottier R., Pfister W., Schleier P., Zinner K.: 5-Aminolaevulinic acid (ALA) induced formation of different fluorescent porphyrins: A study of the biosynthesis of porphyrins by bacteria of the human digestive tract. Journal of Photochemistry and Photobiology B: Biology 2007, 86, 77-86.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ6-0002-0016