PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multifractal analysis of laser Doppler flowmetry signals: partition function and generalized dimensions of data recorded before and after local heating

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Laser Doppler flowmetry (LDF) signals - that reflect the peripheral cardiovascular system - are now widespread in blood microcirculation research. Over the last few years, the central cardiovascular system has been the subject of many fractal and multifractal works. However, only very few multifractal studies of LDF signals have been published. Such multifractal analyses have shown that LDF data can be weakly multifractal but the origin of such characteristics are still unknown. We therefore herein propose a multifractal analysis of LDF signals recorded on the forearm of twelve healthy subjects, before and after skin local heating. The results show that the partition functions for all the signals have power-law characteristics. Moreover, generalized dimensions present very few variations with q for the signals recorded before heating; these variations are larger 20 minutes after local heating. Physiological activities may therefore play a role in the weak multifractal properties of LDF data.
Twórcy
autor
autor
autor
autor
  • Laboratoire d'Ingénierie des Systémes Automatisés (LISA), Université d'Angers, 62 avenue Notre Dame du Lac, 49000 Angers, France, anne.humeau@univ-angers.fr
Bibliografia
  • [1] Mandelbrot B.: How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science 1967, 156, 636-638.
  • [2] Esen F., Esen H.: Detrended fluctuation analysis of laser Doppler flowmetry time series: the effect of extrinsic and intrinsic factors on the fractal scaling of microvascular blood flow. Physiol. Measur. 2006, 27, 1241-1253.
  • [3] Carolan Rees G., Tweddel A. C., Naka K. K., Griffith T. M.: Fractal dimensions of laser Doppler flowmetry time series. Med. Eng. & Physics 2002, 24, 71-76.
  • [4] Eke A., Herman P., Kocsis L., Kozak L. R.: Fractal characterization of complexity in temporal physiological signals. Physiol. Measur. 2002, 23, R1-R38.
  • [5] Eke A., Herman P., Bassingthwaighte J. B., Raymond G. M., Percival D. B., Cannon B., Balla I., Ikrenyi C.: Physiological time series: distinguishing fractal noises from motions. Eur. J. Physiol. 2000, 439, 403-415.
  • [6] Popivanov D., Mineva A., Dushanova J.: Dynamic characteristics of laser-Doppler flux data. Technology and Health Care 1999, 7, 205-218.
  • [7] Popivanov D., Mineva A., Bendayan P., Leger P., Boccalon H., Möller K. O.: Dynamic characteristics of laser-Doppler flux in normal individuals and patients with Raynaud's phenomenon before and after treatment with nifedipine under different thermal conditions. Technology and Health Care 1999, 7, 193-203.
  • [8] Humeau A., Buard B., Mahe G., Chapeau-Blondeau F., Rousseau D., Abraham P.: Multifractal analysis of heart rate variability and laser Doppler flowmetry fluctuations: comparison of results from different numerical methods. Phys. Med. Biol. 2010, 55, 6279-6297.
  • [9] Buard B., Mahe G., Chapeau-Blondeau F., Rousseau D., Abraham P., Humeau A.: Generalized fractal dimensions of laser Doppler flowmetry signals recorded from glabrous and non glabrous skin. Med. Phys. 2010, 37, 2827-2836.
  • [10] Humeau A., Buard B., Chapeau-Blondeau F., Rousseau D., Mahe G., Abraham P.: Multifractal analysis of central (electrocardiography) and peripheral (laser Doppler flowmetry) cardiovascular time series from healthy human subjects. Physiol. Measur. 2009, 30, 617-629.
  • [11] Humeau A., Chapeau-Blondeau F., Rousseau D., Rousseau P., Trzepizur W., Abraham P.: Multifractality, sample entropy, and wavelet analyses for age-related changes in the peripheral cardiovascular system: Preliminary results. Med. Phys. 2008, 35, 717-723.
  • [12] Humeau A., Chapeau-Blondeau F., Rousseau D., Tartas M., Fromy B., Abraham P.: Multifractality in the peripheral cardiovascular system from pointwise Höder exponents of laser Doppler flowmetry signals. Bioph. J. 2007, 93, L59-L61.
  • [13] Boignard A., Salvat-Melis M., Carpentier P. H., Minson C. T., Grange L., Duc C., Sarrault-Reynauld F., Cracowski J. L: Local hyperhemia to heating is impaired in secondary Raynaud's phenomenon. Arthritis Research & Therapy 2005, 7, R1103-1112.
  • [14] Kellogg D. L.: In vivo mechanisms of cutaneous vasodilation and vasoconstriction in humans during thermoregulatory challenges. J. Appl. Physiol. 2006, 100, 1709-1718.
  • [15] Charkoudian N.: Skin blood flow in adult human thermoregulation: how it works, when it does not, and why. Mayo Clin. Proc. 2003, 78, 603-612.
  • [16] Minson C. T., Berry L. T., Joyner M. J.: Nitric oxide and neurally mediated regulation of skin blood flow during local heating. J. Appl. Physiol. 2001, 91, 1619-1626.
  • [17] Kellogg D. L., Liu Y., Kosiba I. F., O'Donnell D.: Role of nitric oxide in the vascular effects of local warming of the skin in humans. J. Appl. Physiol. 1999, 86, 1185-1190.
  • [18] Humeau A., Fizanne L., Garry A., Saumet J. L., L'Huillier J. P.: Signal processing methodology to study the cutaneous vasodilator response to a local external pressure application detected by laser Doppler flowmetry. IEEE Trans. Biomed. Eng. 2004, 51, 190-192.
  • [19] Fromy B., Abraham P., Saumet J. L.: Non-nociceptive capsaicin-sensitive nerve terminal stimulation allows for an original vasodilatory reflex in the human skin. Brain Research 1998, 811, 166-168.
  • [20] Essex T. J., Byrne P. O.: A laser Doppler scanner for imaging blood flow in skin. J. Biomed. Eng. 1991, 13, 189-194.
  • [21] Shepherd A. P., Öberg P. A.: Laser-Doppler blood flowmetry, Kluwer Academic Publishers, Boston, Dordrecht, London.
  • [22] Kvernmo H. D., Stefanovska A., Kirkerboen K.A., Kvernebo K.: Oscillations in the human cutaneous blood perfusion signal modified by endothelium-dependent and endothelium-independent vasodilators. Microvascular Research 1999, 57, 298-309.
  • [23] Kvernmo H. D., Stefanovska A., Bracic M., Kirkerboen K. A., Kvernebo K.: Spectral analysis of the laser Doppler perfusion signal in human skin before and after exercise. Microvascular Research 1998, 56, 173-182.
  • [24] Bollinger A., Yanar A., Hoffmann U., Franzeck U. K.: Is high-frequency flux motion due to respiration or to vasomotion activity? In: Vasomotion and flow motion. Prog. Applied Microcirculation, vol. 20, C. Allegra, M. Intaglietta, K. Messmer (Eds.), Basel, Karger, 1993, 52-58.
  • [25] Humeau A., Steenbergen W., Nilsson H., Strömberg T.: Laser Doppler perfusion monitoring and imaging: novel approaches Med. Biol. Eng. Comp. 2007, 45, 421-435.
  • [26] Halsey T. C., Jensen M. H., Kadanoff L. P., Procaccia I., Shraiman B. I.: Fractal measures and their singularities: The characterization of strange sets. Physical Review A 1986, 33, 1141-1151.
  • [27] Evertsz C. J. G., Mandelbrot B. B. In: Chaos and Fractals: New frontiers of science, H. Peitgen, H. Jurgens, D. Saupe (Eds.), Springer-Verlag, New-York, 1992, 921-953.
  • [28] Munoz-Diosdado A., Guzman-Vergas L., Ramirez-Rojas A., Del Rio-Correa J. L., Angulo-Brown F.: Some cases of crossover behavior in heart interveat and electroseismic time series. Fractals 2005, 13, 253-263.
  • [29] Diego J. M., Martinez-Gonzalez E., Sanz J. L., Mollerach S., Martinez V. J.: Partition function based analysis of cosmic microwave background maps. Monthly Notices of the Royal Astronomical Society 1999, 306, 427-436.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ6-0002-0014
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.