PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sporadic amyotrophic lateral sclerosis: brief pathogenic review and a new causal hypothesis

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article summarizes the pathogenic mechanisms known to be responsible for sporadic amyotrophic lateral sclerosis, such as excitoxicity, endoplasmic reticulum stress, oxidative stress, proteins damage, inflammation, genes abnormalities and neuronal death; some clinical features of the disorder are discussed as well. Finally, it puts forward the hypothesis that astrocytes, rather than the motor neurons, may be the cells initially damaged by the action of a still unknown causal agent, being the neuronal death a consequence of that first insult. The article suggests that an emergent virus, perhaps a retro-virus, or a misfolded infectious protein might be the agent able to accomplish the task.
Twórcy
  • Instituto de Investigaciones Cardiológicas, División Neurologia (ININCA), School of Medicine, Buenos Aires University, Paraguay 2155, 1121 Buenos Aires, Argentina, rsica@fmed.uba.ar
Bibliografia
  • [1] Dong X.X., Wang Y., Qin Z.H.: Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol. Sin. 2009, 30, 379–387.
  • [2] Kawashara Y., Kwak S.: Excitotoxity and ALS: what is unique about the AMPA receptors expressed on spinal motor neurons? Amyotroph. Lateral. Scler. Other. Motor Neuron. Disord. 2005, 6, 131–144.
  • [3] Ilieva E.V., Ayala V., Jove M., Dalfo E., Cacauelos D., Povedano M., Bellmunt M.J., Ferrer I. Pamplona R., Portero-Otin M.: Oxidative and endoplasmic reticulum stress interplay in sporadic amyotrophic lateral sclerosis. Brain 2007, 130, 3111–3123.
  • [4] Fiszman M.L., Ricart K.C., Latini A., Rodriguez G., Sica R.E.: In vitro neurotoxic properties and excitatory aminoacid concentration in the cerebrospinal fluid of amyotrophic lateral sclerosis patients. Relationship with the degree of certainty of diagnosis. Acta Neurol. Scand. 2010, 121, 120–126.
  • [5] Rothstein J.D., Van Kammen M., Levey A.I., Martin L.J., Kuncl R.W.: Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann. Neurol. 1995, 38, 73–84.
  • [6] Sattler R., Rothstein J.D.: Regulation and dysregulation of glutamate transporters. Handb. Exp. Pharmacol. 2006, 175, 277–303.
  • [7] Yang Y., Gozen O., Vidensky S., Robisnon M.B., Rothstein J.D.: Epigenetic regulation of neuron dependent induction of astroglial synaptic protein GLT1. Glia 2010, 58, 277–286.
  • [8] Barber S.C., Shaw P.J.: Oxidative stress in ALS: key role in motor neuron injury and therapeutic target. Free Radic. Biol. Med. 2010, 48, 629–641.
  • [9] Sreedharan J.: Neuronal death in amyotrophic lateral sclerosis (ALS): what can we learn from genetics? CNS Neurol. Disord. Drug Targets 2010, 9, 259–267.
  • [10] Corrado L., D’Alfonso S., Bergamaschi L., Testa L., Leone M., Nasuelli N., Riuchiardi P., Mazzini L.: SOD1 gene mutations in Italian patients with Sporadic Amyotrophic Lateral Sclerosis (ALS). Neuromuscul. Disord. 2006, 16, 800–804.
  • [11] Fiszman M.L., Borodinsky L.N., Ricart K.C., Sanz O.P., Sica R.E.: Cu/Zn supertoxide dismutase activity at different ages is sporadic amyotrophic lateral sclerosis. J. Neurol. Sci. 1999, 162, 34–37.
  • [12] Gagliardi S., Cova E., Davin A., Guareschi S., Keneth A., Alvisi E., Laforenza U., Ghidoni R., Cashman J.R., Cerioni M., Cereda C.: SOD1 RNA expression in sporadic amyotrophic lateral sclerosis. Neurob. Diseas. 2010, 39, 198–203.
  • [13] Atlante A., Gagliardi S., Minervine G.M., Ciotti M.T., Marra E. Calissano P.: Glutamate toxicity in rat cerebellar granullae cells: a major role for xantine oxidase in oxigen radical formation. J. Neurochem. 1997, 68, 2038–2045.
  • [14] Chen Q., Vazquez E.J., Moghadass S., Hopell C.L., Lefnesky E.J.: Production of reactive oxygen species by mitochondria: central role of complex III. J. Biol. Chem. 2003, 278, 36027–36031.
  • [15] Siddique T., Hentati A.: Familial amyotrophic lateral sclerosis. Clin. Neurosci. 1995/96, 3, 338–347.
  • [16] Yim M.B., Kang J.H., Yim H., Kwak H., Chock P.B., Stadtman E.R.: A gain of function of an amyotrophic lateral sclerosis-associated Cu/Zn superoxide dismutase mutant: an enhancement of free radical formation. Proc. Natl. Acad. Sci. USA 1996, 93, 5709–5714.
  • [17] Magrane J., Hervias H., Henning M.S., Damiano M., Kuwamata H., Manfredi G.: Mutant SOD1 in neuronal mitochondria causes toxicity and mitochondrial dynamics abnormalities. Hum. Mol. Genet. 2009, 18, 4552–4564.
  • [18] Sasaki S., Iwata M.: Mitochondrial alterations in the spinal cord of patients with sporadic amyotrophic lateral sclerosis. J. Neuropathol. Exp. Neurol. 2007, 66, 10–16.
  • [19] Rodriguez G.E., Gonzalez Deniselle M.C., Gargiulo Monachelli G.M., Lopez Costa J.J., De Nicola A.F., Sica R.E.: Morphological abnormalities in mitochondria of the skin of patients with sporadic amyotrophic lateral sclerosis. Arq. Neuropsiquiat 2012, 70, 40–44.
  • [20] Ilzecka J.: Total antioxidant status is increased in the serum of amyotrophic lateral sclerosis patients. Scand. J. Clin. Lab. Invest. 2003, 63, 297–302.
  • [21] Gargiulo Monachelli G., Meyer M., Rodriguez G.E., Garay L.I., Sica R.E., De Nicola A.F., Gonzalez Deniselle M.C.: Endogenous progesterone is associated to amyotrophic lateral sclerosis prognostic factors. Acta Neurol. Scand. 2011, 123, 60–67.
  • [22] Tsuji S., Kikuchi S., Shimpo K., Tashiro J., Kishimoto R., Yabe I., Yarmagishi S., Takeuchi M., Sasaki H.: Proteasome inhibition induces selective motor neuron death in organotypic slice cultures. J. Neurosc. Res. 2005, 82, 443–451.
  • [23] Liscic R.M., Breljak D.: Molecular basis of amyotrophic lateral sclerosis. Prog. Neuropsychopharmacol. Biol. Psychiat. 2011, 35, 370–372.
  • [24] Stallings N.R., Puttaparthi K., Luther C.M., Burns D.K., Elliot J.L.: Progressive motor weakness in transgenic mice expressing human TDP-43. Neurobiol. Dis. 2010, 40, 404–414.
  • [25] Dennis J.S., Citron B.A.: Wobbler mice modelling motor neuron disease display elevated transactive response DNA binding protein. Neuroscience 2009, 158, 745–750.
  • [26] Kirby J., Goodall E.F., Smith W., Highley J.R., Mazansu R., Hartley J.A., Hibberd R., Hollinger H.C., Wharton S.B., Morrison K.E., Ince P.G., Mc Hildertt C.J., Shaw P.J.: Broad clinical phenotypes associated with TAR- DNA binding protein (TARDBP) mutations in amyotrophic lateral sclerosis. Neurogenetics 2010, 11, 217–225.
  • [27] Corrado L., Del Bo R., Castellotti B., Ratti A., Cereda C., Penco S., Soraru G., Carlomagno Y., Ghezzi S., Pensato V., Colombrita C., Gagliardi S., Cozzi L., Orsetti V., Mancuso M., Siciliano G., Mazzini L., Comi G.P., Gellera C., Ceroni M., D’Alfonso S., Silani V.: Mutations of FUS Gene in Sporadic Amyotrophic Lateral Sclerosis. J. Med. Genet. 2010, 47, 190–194.
  • [28] Burrel J.R., Hodges J.R.: From FUS to Fibs: what’s new in frontotemporal dementia. J. Alzheimer’s Dis. 2010, 21, 349–360.
  • [29] Deng H.X., Bigio E.H., Zhai H., Fecto F., Ajroud K., Shi Y., Yan J., Mishra M., Ajroud-Driss S., Heller S., Sufit R., Siddique N., Mugnaini E., Siddique T.: Differential involvement of optineurin in amyotrophic lateral sclerosis with or without SOD1 mutations. Arch. Neurol. 2011, 68, 1057–1061.
  • [30] Vijayalakshmi K., Alladi P.A., Sathyaprabha T.N., Subramanian J.R., Nalini A., Raju T.R.: Cerebrospinal fluid from sporadic amyotrophic lateral sclerosis patients induces degeneration of a cultured motor neuron cell line. Brain Res. 2009, 1263, 122–133.
  • [31] Keizman D., Rogowski O., Berlines S., Ish Shalon M., Maimoin N., Nefussy B., Artamonov I., Drory V.E.: Low grade systemic inflammation in patients with amyotrophic lateral sclerosis. Acta Neurol. Scand. 2009; 119, 383–389.
  • [32] Henkel J.S., Beers D.R., Zhao W., Appel S.H.: Microglia in ALS: the good, the bad and the resting. J. Neuroimmune Pharmacol. 2009, 4, 389–398.
  • [33] Papadimitriou D., Le Verche E., Jacquier A., Burcin I., Przedborski S., Diane B.: Inflammation in ALS and SMA: sorting out the good from the evil. Neurobiol. Dis. 2010, 37, 493–502.
  • [34] Morahan J.M., Yu B., Trent R.J., Panphlett R.: A genome wide analysis of brain DNA methylation identifies new candidate genes for sporadic amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Other Motor Neuron. Disor. 2009, 10, 418–429.
  • [35] Maruyama H., Morino H., Ito H., Izumi I., Kato H., Watanabe Y., Kinoshita Y., Kamada M., Nodera H., Suzuli H., Komure O., Matsuura S., Kobatake K., Morimoto N., Abe K., Suzuki N., Aoki M., Kawata A., Hirai T., Kato T., Ogasawara K., Hirano A., Takumi T., Kusaka H., Kaji R., Kawakami H.: Mutations of optineurin in amyotrophic lateral sclerosis. Nature 2010, 465, 223–226.
  • [36] Mjounie E., Renton A.E., Mok K., Dopper E.G., Waite A., Rollinson S., Chio A., Restagno G., Nicolau N., Simon S.J., van Switen J.C., Abramzon Y., Johnson J.O., Sendtner M., Pamphlett R.P., Orrell L.W., Mead S., Sidle K.C., Houlden H., Rohrer J.D., Morrison K.E., Pall H., Talbot K., Ansorge O.: The Chromosome 9-ALS/FTD Consortium, The Frenche Research Network of FTLD/FTLD/ALS, The ITALSGEN Consotium, Hernandez D.J., Arepalli S., Sabatelli M., Mora G., Corbo M., Giannini F., Calvo A., Englund E., Borghero G., Floris G.L., Remes A.M., Laaksorvita H., Mc Cluskey L., Trojanowski J.Q., Van Deerlin V.M., Schellenberg G.D., Nalls M.A., Drory V.E., Lu C.S., Yeh T.H, Ishiura H., Taahashi Y., Tsuji S., Le Ber I., Brice A., Drepper C., Williams N., Kirby J., Shaw P., Hardy J., Tienari P.J., Heutink P., Morris H.R., Pickering Brown S., Traynor B.J.: Frequency of C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. Lancet Neurol. 2012, 11, 323–330.
  • [37] Bongaerts G.P.: What of apoptosis is important: the decay process or the causative origin? Med. Hypothesis 2008, 70, 482–487.
  • [38] Gonzalez Deniselle M.C., Lopez Costa J.J., Saavedra J.P., Pietranera L., Garay L., Guennoun R., Schimacher M., De Nicola A.F.: Progesterone neuroprotection in the wobbler mouse, a genetic model of spinal cord motor neuron disease. Neurobiol. Dis. 2002, 11, 457–468.
  • [39] Cherra S.J., Dagda R.K., Chu C.T.: Review: autophagy and neurodegeneration: survival at a cost? Neuropathol. Appl. Neurobiol. 2010, 36, 125–132.
  • [40] Ravits J., Paul P., Jorg C.: Focality of upper and lower motor neuron degeneration at the clinical onset of ALS. Neurology 2007, 68, 1571–1575.
  • [41] Ravits J., Laurie P., Fan Y., Moore D.H.: Implications of ALS focality. Neurology 2007, 68, 1576–1582.
  • [42] Gargiulo Monachelli G.M., Janota F., Bettini M. Rodriguez G., Gonzalez Deniselle M.C., Shoesmith C.L., Strong M.J., Sica R.E.: Regional spread pattern affects prognosis in patient with amyotrophic lateral sclerosis. Eur. J. Neurol. 2012, Jan 17. doi: 10.1111/j.1468–1331.2011.03616.x. [Epub ahead of print].
  • [43] MacGowan D.J., Scelsa S.N., Imperato T.E., Liu K.N., Baron P., Polsky B.: A controlled study of reverse transcriptase in serum and CSF of HIV-negative patients with ALS. Neurology 2007, 68, 1944–1946.
  • [44] Mc Cormick A.L., Brown R.H., Cudkowicz M.E., Al Chabali A., Garson J.A.: Quantification of reverse transcriptase in ALS and elimination of a novel retroviral candidate. Neurology 2008, 70, 278–283.
  • [45] Moulignier A., Moulonguet A., Pialoux G., Rozenbaum W.: Reversible ALS-like disorder in HIV infection. Neurology 2001, 57, 995–1001.
  • [46] Zil´ber L.A., Bajdakova Z.L., Gardas´jan A.N., Konovalov N.V., Bunina T.L., Barabadze E.M.: Study of the aetiology of amyotrophic lateral sclerosis. Bull WHO; 1963, 29, 449–456.
  • [47] Douville R., Liu J., Rothstein J., Nath A.: Identification of active loci of a human endogenous retrovirus in neurons of patients with amyotrophic lateral sclerosis. Ann. Neurol. 2011, 69, 141–151.
  • [48] Tsukagoshi H., Yanagisawa N., Oguchi K., Nagashima K., Murakami T.: Morphometric quantification of the cervical limb motor cells in controls and in amyotrophic lateral sclerosis. J. Neurol. Sci. 1979, 41, 287–297.
  • [49] Haydon P.G., Carmignoto G.: Astrocyte control of synaptic transmission and neurovascular coupling. Physiol. Rev. 2005, 86, 1009–1031.
  • [50] Hewett J.A.: Determinants of regional and local diversity within the astroglial lineage of normal central nervous system. J. Neurochem. 2009, 110, 1717–1736.
  • [51] Losy J., Michalowska Wender G.: Surface CD2, CD4, CD8 markers and IL-2 and TNF-alpha cytokines in amyotrophic lateral sclerosis. Neurol. Neurochir. Pol. 2001, 35, 57–61.
  • [52] Churchill M.J., Wesselingh S.L., Cowley D., Mc Arthur J.C., Brew B.J.: Extensive astrocyte infection is prominent in human immunodeficiency virus associated dementia. Ann. Neurol. 2009, 66, 253–258.
  • [53] Kovacs G.G., Budka H.: Distribution of apoptosis related proteins in sporadic Creutzfeldt-Jakob disease. Brain Res. 2010, 1323, 192–199.
  • [54] Rafalowska J., Dziewulska D., Gadamski R., Chrzanowska H., Modrzewska-Leczuk M., Grieb P.: Is the spinal cord motoneuron exclusively a target in ALS? Comparison between astroglial reactivity in a rat model of familial ALS and in human sporadic ALS cases. Neurol. Res. 2011 (Epub ahead of print).
  • [55] Haidet-Phillips A.M., Hester M.E., Miranda C.J., Meyer K., Braun L., Frakes A., Song S., Likhite S., Murtha M.J., Foust K.D., Rao M., Eagle A., Kammesheidt A. Christensen A., Mendell J.R., BNurghes A.H., Kaspar B.K.: Astrocytes from familial and sporadic ALS patients are toxic to motor neurons. Nat. Biotechnol. 2011, 29, 824–828.
  • [56] Schiffer D., Fiano V.: Astrogliosis in ALS: possible interpretation according to pathogenic hypothesis. Amyotroph. Lateral. Scler. Other Motor Neuron. Disord. 2004, 5, 22–25.
  • [57] Gonzalez Deniselle M.C. Lavista Llanos, S., Ferrini M., Lima A., Roldan A, De Nicola A.F.: In vitro differences between astrocytes of control and Wobbler mice spinal cord. Neurochem. Research. 1999, 24, 1535–1541.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ6-0001-0011
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.