Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Similarity solutions are obtained for an adiabatic flow behind a magnetogasdynamic cylindrical shock wave propagating in a rotational axisymmetric flow of a perfect gas in the presence of a variable azimuthal magnetic field. The initial medium is considered to have a variable density and a variable azimuthal velocity component in addition to a variable axial velocity. Initial velocities, density and the magnetic field are assumed to obey power laws. Distributions of the fluid velocities, density, pressure, magnetic field and vorticity components are obtained in the flow-field behind the shock front. Effects of an increase in the value of the index for variation of an ambient azimuthal magnetic field, in the value of the index for ambient density and in the strength of the initial magnetic field are obtained. It is found that the presence of the magnetic field has a decaying effect on the shock wave.
Rocznik
Tom
Strony
603--619
Opis fizyczny
Bibliogr. 16 poz., tab., wykr.
Twórcy
autor
autor
- Department of Mathematics and Statistics D.D.U. Gorakhpur University, Gorakhpur-273009, INDIA, jpv_univgkp@yahoo.com
Bibliografia
- Chaturani P. (1971): Strong cylindrical shocks in a rotating gas. - Appl. Sci. Res., vol.23, No.1, pp.197-211.
- Christer A.H. and Helliwell J.B. (1969): Cylindrical shock and detonation waves in magnetogasdynamics. - J. Fluid Mech., vol.39, No.4, pp.705-725.
- Director M.N. and Dabora E.K. (1977): An experimental investigation of variable energy blast waves. - Acta. Astronaut., vol.4, No.3, pp.391-407.
- Freeman R.A. (1968): Variable energy blast waves. - J. Phys. D, vol.1, No.12, pp.1697-1710.
- Lee T.S. and Chen T. (1968): Hydromagnetic interplanetary shock waves. - Planet. Space Sci., vol.16, No.12, pp.1483-1502.
- Levin V.A. and Skopina G.A. (2004): Detonation wave propagation in rotational gas flow. - J. Appl. Mech. Tech. Phys., vol.45, No.4, pp.457-460.
- Nagayama K. (1981): New method of magnetic flux compression by means of the propagation of shock induced metallic transition in semi conductors. - Appl. Phys. Lett., vol.38, No.2, pp.109-110.
- Rogers M.H. (1958): Similarity flows behind strong shock waves. - Quart. J. Mech. Appl. Math., vol.11, No.4, pp.411-422.
- Rosenau P. and Frankenthal S. (1976): Shock disturbances in a thermally conducting solar wind. - Astrophys. J., vol.208, No.2, pp.633-637.
- Sakurai A. (1956): Propagation of a spherical shock waves in stars. - J. Fluid Mech., vol.1, No.4, pp.436-453.
- Sakurai A. (1965): Blast wave theory, an article in the book, basic developments in fluid dynamics. - Academic Press, vol.1, pp.309-375.
- Summers D. (1975): An idealized model of a magnetohydrodynamics spherical blast waves applied to a flare produced shock in the solar wind. - Astron. Astrophys., vol.45, No.1, pp.151-158.
- Vishwakarma J.P. (2003): Self-similar analytical solutions for blast waves in inhomogeneous atmospheres with frozen-in-magnetic field. - Eur. Phys. J. B, vol.34, No.2, pp.247-253.
- Vishwakarma J.P. and Vishwakarma S. (2007): Magnetogasdynamics cylindrical shock waves in a rotating gas with variable density. - Int. J. Appl. Mech. Engng., vol.12, No.1, pp.283-297.
- Vishwakarma J.P., Maurya A.K. and Singh K.K. (2007): Self-similar adiabatic flow headed by a magnetogasdynamics cylindrical shock wave in a rotating non-ideal gas. - Geophys. Astrophys. Fluid Dyn., vol.101, No.2, pp.155-168.
- Whitham G.B. (1958): On the propagation of shock wave through regions of non-uniform area or flow. - J. Fluid Mech., vol.4, No.4, pp.337-360.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ5-0027-0016