PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Crank-Nicolson semi-implicit approach for numerical solutions of two- dimensional coupled nonlinear Burgers' equations

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The two-dimensional Burgers' equation is a mathematical model which is used to describe various kinds of phenomena such as turbulence and viscous fluid. In this paper, Crank-Nicolson semi-implicit scheme is used to handle such problem. The proposed scheme forms a system of linear algebraic difference equations to be solved at each time-step. The linear system is solved by direct method. Numerical results are compared with those of exact solutions and other available results. The present method performs well. To our best knowledge no one has solved Burgers' equations using this scheme. The proposed scheme can be extended for solving non-linear problems arising in various branches of engineering and science.
Rocznik
Strony
571--581
Opis fizyczny
Bibliogr. 14 poz., tab., wykr.
Twórcy
autor
Bibliografia
  • Adomian G. (1995): The diffusion-Brusselator equation. - Comput. Math., pp.1-3.
  • Bahadir A.R. (2003): A fully implicit finite-difference scheme for two-dimensional Burgers' equation. - Appl. Math. Comput., vol.137, pp.131-137.
  • Bateman H. (1915): Some recent researches on the motion of fluids. - Monthly Weather Review, vol.43, pp.163-170.
  • Burger J.M. (1950): A mathematical model illustrating the theory of turbulence. - Advances in Applied Mathematics, vol.3, pp.201-230.
  • Cole J.D. (1951): On a quasilinear parabolic equations occurring in aerodynamics. - Quart. Appl. Math., vol.9, pp.225-36.
  • Debtnath L. (1997): Nonlinear partial differential equations for scientist and engineers. - Boston: Birkhauser.
  • Fletcher C.A.J. (1983): Generating exact solutions of the two-dimensional Burgers' equation. - Int. J. Numer. Meth. Fluids, pp.213-216.
  • Fletcher C.A.J. (1983): A comparison of finite element and finite difference of the one- and two-dimensional Burgers' equations. - J. Comput. Phys., vol.51, pp.159-188.
  • Goyon O. (1996): Multilevel schemes for solving unsteady equations. - Int. J. Numer. Meth. Fluids, vol.22, pp.937-959.
  • Jain P.C. and Holla D.N. (1978): Numerical solution of coupled Burgers' equations. - Int. J. Numer. Meth. Eng., pp.213-222.
  • Logan J.D. (1994): An introduction to nonlinear partial differential equations. - New York: Wily-Interscience.
  • Srivastava V.K., Tamsir M., Bhardwaj U. and Sanyasiraju Y.V.S.S. (2011): Crank-Nicolson scheme for numerical solutions of two dimensional coupled Burgers' equations. - International Journal of Scientific and Engineering Research, vol.2, No.5.
  • Tamsir M. and Srivastava V.K. (2011): A semi-implicit finite-difference approach for two-dimensional coupled Burgers' equations. - International Journal of Scientific and Engineering Research, vol.2, No.6.
  • Wubs F.W. and de Goede E.D. (1992): An explicit-implicit method for a class of time-dependent partial differential equations. - Appl. Numer. Math. vol.9, pp.157-181.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ5-0027-0014
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.