Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A spectral transport equation is derived here that governs the evolution of a random field of surface gravity waves in a two layer fluid model. This equation is used to study the stability of an initially homogeneous Lorentz spectrum under long wave length perturbations. It is observed that the effect of randomness is to reduce the growth rate of instability. An increase in the thickness of the upper fluid results in an increase in the extent of instability. It is also found that the extent of instability becomes less for a smaller density difference of the two fluids.
Rocznik
Tom
Strony
481--493
Opis fizyczny
Bibliogr. 9 poz., wykr.
Twórcy
autor
autor
autor
- Department of Mathematics, Abhedananda Mahavidyalaya Sainthia, Birbhum - 731234, INDIA, sudipta131@gmail.com
Bibliografia
- Alber I.E. (1978): The effects of randomness on the stability of two dimensional surface wave trains.Proc. R. Soc. Lond., vol.A363, pp.525-546.
- Alber I.E. and Saffman P.G. (1978): Stability of random non linear deep water waves with finite bandwidth spectrum. - TRW Defense and Space Systems Group Rep. 31326-6035-RU-00.
- Bhattacharya S. and Das K.P. (1997): The effect of randomness on the stability of deep water surface gravity waves in the presence of a thin thermocline.J. Austral. Math. Soc. Ser., vol.B39, pp.1-17.
- Crawford D.R., Saffman P.G. and Yuen H.C. (1980): Evolution of a random inhomogeneous field of nonlinear deep water gravity waves.Wave Motion, vol.2, pp.1-16.
- Davey A. and Stewartson K. (1974): On three-dimensional packets of surface waves. ( Proc. R. Soc. Lond., vol.A338, pp.101-110.
- Dhar A.K. and Das K.P. (1990): A fourth order evolution equation for deep water surface gravity waves in the presence of wind blowing over water. Phys. Fluids, vol.A2, pp.778-783.
- Dhar A.K. and Das K.P. (2001): The effect of randomness on stability of surface gravity waves from fourth order nonlinear evolution equation.Int. J. of Applied Mechanics and Engineering, vol.6, pp.11-34.
- Dysthe K.B. (1979): Note on a modification to the non-linear Schrödinger equation for application to deep water waves.( Proc. Roy. Soc. London., vol.A369, pp.105-114.
- Senapati S., Debsarma S. and Das K.P. (2010): Fourth order evolution equations for a surface gravity wave packet in a two layer fluid.Int. J. of Applied Mechanics and Engineering, vol.15, No.4, pp.1215-1225.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ5-0027-0009