Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The determination of stability of slope is an important task in geological engineering practice. This paper proposes the use of the least square support vector machine (LSSVM) for the determination of stability of slope. The LSSVM is a statistical learning method which has a self-contained basis of statistical-learning theory and excellent learning performance. The five input variables used for the LSSVM model in this study are the unit weight (d), cohesion (c), angle of internal friction, slope angle, height (H) and pore water pressure coefficient (ru). The LSVM model also gives a probabilistic output. This study shows that the LSSVM model is a robust tool for slope stability analysis.
Rocznik
Tom
Strony
279--287
Opis fizyczny
Bibliogr. 24 poz., tab., rys.
Twórcy
autor
- Centre for Disaster Mitigation and Management VIT University Vellore-632014, INDIA, pijush.phd@gmail.com
Bibliografia
- Bishop A.W. (1955): The use of slip circle in the stability of slopes. - Geotechnique, vol.5, No.1, pp.7-17.
- Bishop A.W. and Morgenstern N.R. (1960): Stability coefficients for earth slopes. - Geotechnique, vol.10, No.4, pp.129-150.
- Chen W.F. and Liu X.L. (1990): Limit Analysis in Soil Mechanics. - Amsterdam: Elsevier.
- Chen W.F., Giger M.W. and Fang H.Y. (1969): On the limit analysis of stability of slopes. - Soils and Foundations, vol.9, No.4, pp.23-32.
- Fellenius W. (1936): Calculation of stability of earth dams. - Transactions Second Congress on Large Dams, Washington, vol.4, pp.445.
- Fletcher R. (1987): Practical Methods of Optimization. - New York: Wiley, Chichester.
- Karal K. (1977a): Application of energy method. - Journal of Geotechnical Engineering Division, ASCE, vol.103, No.5, pp.381-399.
- Karal K. (1977b): Energy method for soil stability analyses. - Journal of Geotechnical Engineering, ASCE, vol.103, No.5. pp.431-447.
- Kecman V. (2001): Learning and Soft Computing: Support Vector Machines, Neural Networks, and Fuzzy Logic Models. - The MIT Press, Cambridge, Massachusetts, London, England.
- Kumar J. and Samui P. (2006): Stability determination for layered soil slopes using the upper bound limit analysis. - Geotechnical and Geological Engineering Journal, Springer Publications, vol.24, No.6, pp.1803-1819.
- Lu P. and Rosenbaum M.S. (2003): Artificial neural networks and grey systems for the prediction of slope stability. - Natural Hazards, vol.30, pp.383-398.
- MathWork Inc. (1999): Matlab User's Manual. - Version 5.3. Natick, MA: The MathWorks, Inc.
- Michalowski R.L. (1994): Limit analysis of slopes subjected to pore pressure. - Proceeding, Conference on Comp, Methods and Advances in Geomech Srirwardane and Zaman, eds., Balkema, Rotterdam, Netherlands.
- Michalowski R.L. (1995): Slope stability analysis: a kinematical approach. - Geotechnique, vol.45, No.2, pp.283-293.
- Michalowski R.L. (2002a): Stability charts for uniform slopes. - Journal of Geotechnical and Geoenvironmental Engineering, ASCE, vol.128, No.4, pp.351-355.
- Morgenstern N.R. and Price V.E. (1965): The analysis of the stability of general slip surfaces. - Geotechnique, vol.15, No.1, pp.79-93.
- Park D. and Rilett L.R. (1999): Forecasting freeway link ravel times with a multi-layer feed forward neural network. - Computer Aided Civil and Infra Structure Engineering, vol.14, pp.358-367.
- Pijush S. and Kumar B. (2006): Artificial neural network prediction of stability numbers for two-layered slopes with associated flow rule. - Electronics Journal of Geotechnical Engineering.
- Sah N.K., Sheorey P.R. and Upadhyaya L.N. (1994): Maximum likelihood estimation of slope stability. - International Journal of Rock Mechanics and Mining Sciences and Geomechanics, vol.31, No.1, pp.47-53.
- Sakellatiou M.G. and Ferentinou M.D. (2005): A study of slope stability prediction using neural networks. - International Journal of Geotechnical and Geological Engineering, vol.23, pp.419-445.
- Sincero A.P. (2003): Predicting Mixing Power Using Artificial Neural Network. - EWRI World Water and Environmental.
- Suykens J.A.K., Van Gestel T., De Brabanter J., De Moor B. and Vandewalle J. (2002): Least Squares Support Vector Machines Singapore. - World Scientific.
- Suykens J.A.K. and Vandewalle J. (1999): Least squares support vector machine classifiers. - Neural Processing Letters, vol.9, No.3, pp.293-300.
- Van Gestel T., Baesens B., Suykens J., Espinoza M., Baestaens D., Vanthienen J. and De Moor B. (2003): Bankruptcy prediction with least squares support vector machine classifiers. - In Proc. of the International Conference on Computational Intelligence for Financial Engineering (CIFER'03) Hong Kong, China, pp.1-8.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ5-0026-0021