PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Geochemical characterization of a spanish leonardite coal

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Geochemiczna charakterystyka hiszpańskiego węgla leonardite
Języki publikacji
EN
Abstrakty
EN
Geochemical characterization of the inorganic and organic fractions of a Spanish leonardite coal (Torrelapaja, Cretaceous basin belonging to the Utrillas facies) and their humic acids were accomplished. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) was used to analyze trace elements with the aim to know their suitability for subsequent environmental applications. All trace elements analyzed in this study fell in the range of most worldwide coals except U (107 ppm) for leonardite, showing a value 45 times higher compared to the worldwide coals. The spectrum IR of the humic acid fraction shows an increase of carboxylic groups in comparison with the spectrum of leonardite. X-ray diffractometry (XRD) and SEM (Scanning electron microscopy) coupled to energy dispersive X-ray (EDX) techniques were also applied to identify the crystalline phases and the inorganic sulfur forms from leonardite, respectively. The organic soluble extract was also studied in order to determine the depositional environment of the leonardite coal.
PL
Dokonano geochemicznej charakterystyki nieorganicznych i organicznych frakcji hiszpańskiego węgla leonardite (basen kredowy Torrelapaja, należący do facji Utrillas) i ich kwasów humusowych (humic acids). Analizy pierwiastków śladowych dokonano za pomocą spektrometrii mas z jonizacją w plazmie sprzężonej indukcyjnie (ICP-MS) w celu poznania ich przydatności do dalszych zastosowań środowiskowych. Wszystkie pierwiastki śladowe analizowane na potrzeby tego badania mieściły się w przedziale właściwym dla większości światowych węgli, za wyjątkiem uranu (107 ppm), którego wartość dla węgla leonardite była 45 razy wyższa w porównaniu do światowych węgli. Widmo podczerwieni frakcji kwasu humusowego wykazuje zwiększoną ilość grup karboksylowych w porównaniu do widma węgla leonardite. Dyfraktometria rentgenowska (XRD) oraz elektronowa mikroskopia skaningowa (SEM) w połączeniu z technikami spektrometrii rentgenowskiej dyspersyjnej (EDX) zostały zastosowane, aby zidentyfikować odpowiednio fazy krystaliczne i nieorganiczne formy siarkowe z węgla leonardite. Organiczny rozpuszczalny ekstrakt został także przebadany, aby określić środowisko złożowe węgla leonardite.
Rocznik
Strony
789--804
Opis fizyczny
Bibliogr. 53 poz., tab., wykr.
Twórcy
autor
autor
autor
Bibliografia
  • Brassell S.C., Comet P.A., Eglinton G., Maxwell J.R., Thomson I.D., Tibbet P.J., Volkmann J.K., 1983. The origin and fate of lipids in the Japan Trench. In: Douglas AG, Maxwell JR (eds) Advances in Organic Geochemistry 1979, Pergamon, Oxford, pp. 375-392.
  • Brassell S.C., Eglinton G., Mo F.J., 1986. Biological marker compounds as indicators of the depositional history of the Maoming oil shale. Organic Geochemistry, 10, 927-941.
  • Cabrera L., Cabrera M., Gorchs R., de las Heras F.X.C., 2002. Lacustrine basin dynamics and organosulphur compound origin in a carbonate-rich lacustrine system (Late Oligocene Mequinenza Formation, SE Ebro basin, NE Spain). Sedimentary Geology, 148, 289-317.
  • Chandrajith R., Seneviratna S., Wickramaarachchi K., Attanayake T., Aturaliya T.N. C., Dissanayake C.B., 2010. Natural radionuclides and trace elements in rice field soils in relation to fertilizer application: study of a chronic kidney disease area in Sri Lanka. Environmental Earth Sciences, 60, 193-201.
  • Dai S., Ren D., Zho Y., Chou C. L., Wang X., Zhao L., Zhu X., 2008. Mineralogy and geochemistry of a superhighorganic-sulfur coal, Yanshan Coalfield, Yunnan, China: evidence for a volcanic ash component and influence by submarine exhalation. Chemical Geology, 255, 182-194.
  • Cygankiewicz J., Dudzinska A., Zyla M., 2007. Sorption and desorption of carbon monoxide in several samples of Polish hard coal. Arch. Min. Sci., vol 52, No 4, p. 573-585.
  • de las Heras F.X.C., 1991. Geoquímica Orgŕnica de conques lacustres fóssils. Arxius de la Secció de Ciències, XCVII. Institut d'Estudis Catalans, Barcelona, 324 pp.
  • de las Heras F.X.C., Grimalt J.O., Lopez J.F., Albaigés J., Sinninghe Damsté J.S., Schouten S., de Leeuw J.W., 1997. Free and sulphurized hopanoids and highly branched isoprenoids in immature lacustrine oil shales. Organic Geochemistry, 27, 41-63.
  • del Río J.C., Hatcher P.G., 1996. Humic and Fulvic acids. Isolation, structure and environmental role. In: Gaffney JS, Marley NA, Clark SB (eds). ACS Symposium series 651, Am Chem Soc, Washington DC, p. 78.
  • Diessel C.F.K., 1992. Coal-Bearing Depositional Systems. Springer Verlag, Berlin (1992), 721 pp.
  • Eglinton T.I., Irvine J.E., Vairavamurthy A., Zhou W., Manowitz B., 1994. Formation and diagenesis of macromolecular organic sulfur in Peru margin sediments. Organic Geochemistry, 22, 781-799.
  • Fitzgerald J.W., 1976. Sulfate ester formation and hydrolysis - potentially important yet often ignored aspect of sulfur cycle of aerobic soils. Bacteriological Reviews, 40, 698-721.
  • Gayer R.A., Rose M., Dehmer J., Shao L.Y., 1999. Impact of sulphur and trace element geochemistry on the utilization of a marine-influences coal-case study for South wales Variscan foreland basin. International Journal of Coal Geology, 40, 151-174.
  • Gorchs R., Olivella M.A., de las Heras F.X.C., 2003. New aromatic biomarkers in sulfur-rich coal. Organic Geochemistry, 33, 1627-1633.
  • Hayes M.H.B., MacCarthy P., Malcolm R.L., Swift R.S., 1989. In: Hayes MHB, MacCarthy RL, Malcolm Swift RS (eds.) Humic Substances II. In search of structure. Wiley, Chichester, p. 689.
  • Jackso J.A., Mehl J.P., Neuendorf K.E., 2008. Glossary of Geology. American Geological Institute, 800 pp.
  • Krachler M., Shotyk W., 2004. Natural and anthropogenic enrichments of molybdenum, thorium, and uranium in a complete peat bog profile (Jura Mountains, Switzerland). Journal of Environmental Monitoring, 6, 418-426.
  • Ketris M.P., Yudovich Ya.E., 2009. Estimations of Clarkes for Carbonaceous biolithes: World averages for trace element contents in black shales and coals. International Journal of Coal Geology, 78, 135-148.
  • Lawson G.J., Stewart D., 1989. Humic Substances II. In search of structure. In: Hayes MHB, MacCarthy RL, Malcolm Swift RS (eds.) Humic Substances II. In search of structure, Wiley, Chichester, p. 641.
  • López-Buendía A.M., Bastida J., Querol X., Whateley M.K.G., 1999. Geochemical data as indicators of palaeosalinity in coastal organic-rich sediments. Chemical Geology, 157, 235-254.
  • Mata-Perelló J.M., Pocoví Juan A., Vilaltella Farrás J., 2008. Inventario de los indicios mineros, del patrimonio minero y del patrimonio geológico de la comunidad de calatayud (Zaragoza, Aragón, Sistema ibérico). In: Diputación General de Aragón (ed) Datos de Torrelapaja, tomo 5, pp. 1215-1248.
  • Mcllveen-Wright D.R., Huang Y., Rezvani S., Wang Y., 2007. A technical and environmental analysis of co-combustion of coal and biomass in fluidised bed technologies. Fuel, 86, 2032-2042.
  • Nishimoto S., 1974. A taxonomic study of n-alkanes in aquatic plants. Journal of Sciences Hiroshima University, 28, 159-163.
  • Odzoba D.M., Blyth J.C., Engler R.F., Dinel H., Schnitzer M., 2001. Leonardite and humified organic matter. In: Ghabbour E.A., Davies G. (eds) Humic Substances: Structures, Models and Functions. Royal Society of Chemistry, 388 pp.
  • Olivella M.À., del Río J.C., Palacios J., Vairavamurthy M.A., de las Heras F.X.C., 2002a. Organic Structural Composition of Leonardite Coal: A comparison of Py-GC-MS, XPS and XANES techniques. Journal of Analytical and Applied Pyrolysis, 63 (1), 59-68.
  • Olivella M.À., Palacios J., Vairavamurthy M.A, del Río J.C., de las Heras F.X.C., 2002b. Sulfur functionalities in fossil fuels: a comparative study using destructive- (ASTM and PY-GC-MS) and non-destructive (SEM-EDX, XANES and XPS) techniques. Fuel, 81, 405-411.
  • Olivella M.À, Gorchs R., de las Heras F.X.C., 2006. Origin and distribution of biomarkers in the sulphur rich Utrillas coal basin - Teruel mining district - Spain. Organic Geochemistry, 37, 1727-1735.
  • Piccolo A., Stevenson F.J., 1981. Infrared spectra of Cu2+, Pb2+ and Ca+2 complexes of soil humic substances. Geoderma, 27, 195-208.
  • Querol X., Fernandez Turiel J.L., Lopez Soler A., Hagemann H.W., Dehmer J., Juan R., Ruiz C., 1991. Distribution of sulfur in coals of the Teruel Mining District (NE Spain). International Journal of Coal Geology, 18, 327-348.
  • Querol X., Whateley M.K.G., Fernández Turiel J.L., Tuncali E., 1997. Geological controls on the mineralogy and geochemistry of the Beypazari lignite, central Anatolia, Turkey. International Journal of Coal Geology, 32, 255-271.
  • Rebhun M., Meir S., Laor Y., 1998. Using dissolved humic acid to remove hydrophobic contaminants from water waste from complexation-floculation process. Environmental Science and Technology, 32, 981-986.
  • Ricca G., Federico L., Astori C., Gallo R., 1993. Structural investigations of humic acid from leonardite by spectroscopic methods and thermal analysis. Geoderma, 57, 263-274.
  • Richter M.K., Sander M, Krauss M., Christl I., Dahinden M.G., Schneider M.K., Schwarzenbach R.P., 2009. Cation binding of antimicrobial sulfathiazole to leonardite humic acid. Environmental Science and Technology, 43, 6632-6638.
  • Robinson N., Cranwell P.A., Eglinton G., Brassell S.C., Sharp C.L., Gophen M., Pollinger U., 1986. Lipid geochemistry of lake Kinneret. Organic Geochemistry, 10, 733-742.
  • Simoneit B.R.T., Vuchev V.T., Grimalt J.O., 1984. Organic matter along the sedimentary sequences of the Moroccan continental margin. In: Initial reports of the Deep Sea Drilling Project Printing office. Edition Washington DC, pp. 807-824.
  • Solé-Sardans M., Casas-Sabata J.M., Lao-Luque C., 2003. Removal of Zn from aqueous solutions by low-rank coal. Water Air and Soil Pollution, 144, 57-65.
  • Sutheimer S.H., Cabaniss S.E., 1997. Aluminium binding to humic substances determined by high performance cation exchange chromatography. Geochimica et Cosmochimica Acta, 61, 1-9.
  • Tan K.H., 2003. Humic matter in soil and the environment: principles and controversies. CRC Press, 408 pp.
  • United States Environmental Protection Agency (USEPA) (1992) National Drinking Water Standards. Office of Water.
  • Vairavamurthy A., Zhou E., Eglinton T., Manowitz B., 1994. Sulfonates: A novel class of organic sulfur compounds in marine sediments. Geochimica et Cosmochimica Acta, 58, 4681-4687.
  • Vairavamurthy A., Schoonen M.A.A., 1995. Geochemical transformations of sedimentary sulfur: An introduction. In: Vairavamurthy AM, Schoonen AA (eds) Geochemical Transformations of Sedimentary Sulfur. American Chemical Society, Washington, 467 pp.
  • Vinkler P., Lakatos B., Meisel J., 1976. Infrared spectroscopic investigations of humic substances and their metal complexes. Geoderma, 15, 231-242.
  • Vogl J., Heumann K.G., 1997. Determination of heavy metals complexes with humic substances by HPLC/ICP-MS coupling using online isotope-dilution technique. Fresenius Journal of Analytical Chemistry, 359, 438-441.
  • Warwick P., Hall A., Read D., 1994. A comparative study employing three different models to investigate the complexation properties of humic and fulvic acids. Radiochemistry, 66/67, 133-140.
  • Westall J.C., Jones J.D., Tumer G.D., Zachara J.M., 1995. Models for association of metal ions with heterogeneous environmental sorbents. 1. Complexation of Co(II) by leonardite humic acid as a function of PH and NaClO4 concentration. Environmental Science and Technology, 29, 951-959.
  • WHO (1998) Guidelines for drinking water quality, Health criteria and other supporting information, Vol. 2. World Health Organization, Geneva.
  • Wu C.F., Zhang L.M., 2010. Heavy metal concentrations and their possible sources in paddy soils of a modern agricultural zone, southeastern China. Environmental Earth Sciences, 60, 45-56.
  • Yuqun Z., Xuchang X., Zhang H., Huiling T., Shujuan W., Yan L., 2007. The development of pollution control technology in coal combustion in China. Frontiers of Energy and Power Engineering in China, 1, 9-15.
  • Yun S.S., Yang H.B., Yoo J.H., Moon H., 1997. Complexation of Eu+3 and Am+3 with soil humic-acid extracted from Okchon basin of Korean Peninsula. Journal of Radioanalytical and Nuclear Chemistry, 218, 177-181.
  • Zeledón-Toruño Z.C., Lao C., de las Heras F.X.C., Solé M., 2007. Removal of PAHs from water using an immature coal (leonardite). Chemosphere, 67, 505-512.
  • Zeng R., Zhuang X., Koukouzas N., Xu W., 2005. Characterization of trace elements in sulphur-rich Late Permian coals in the Heshan coal field, Guangxi, South China. International Journal of Coal Geology, 61, 87-95.
  • Zhang Y.J., Bryan N.D., Livens F.R., Jones M.N., 1996. Complexing of metal-ions by humic substances. ACS Symposium Series, 651, 195-206.
  • Zubovic P., Oman C.L., Coleman S.L., Bragg L.J., Kerr P.T., Kozey K.M., Simon F.O., Rowe J.J., Medlin J.H., Walker F.E.,1979. Chemical analysis of 617 coal samples from the Eastern United States. U.S. Geological Survey Open-File Report, 79-665, 453 p.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ5-0021-0055
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.