PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determination of open pit mining cut-off grade strategy using combination of nonlinear programming and genetic algorithm

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Określenie granicznej zawartości pierwiastka użytecznego w rudzie wydobywanej metodą odkrywkową w oparciu o połączenie programowania liniowego i algorytmów genetycznych
Języki publikacji
EN
Abstrakty
EN
Determination of cut-off grade strategy is one of the most important stages of open pit mine planning and design. It is the parameter directly influencing the financial, technical, economic, legal, environmental, social and political issues in relation to mining operation. Choosing the optimum cut-off grade strategy (COGS) that maximizes the economic outcome has been a major topic for research workers of nearly one century. Many researchers have contributed in devising methods and algorithms, such as dynamic programming, linear programming, optimal control and so on for various aspects of its determination. In this paper, a nonlinear mathematical programming for cut-off grade strategy optimization is presented considering the three main stages of mining operation introduced by K.F. Lane. In this model maximization of net present value of mining operation, under the three constraints of mining stages' capacities, considered as the optimization criteria. Due to the discrete representation of the mining resource, the proposed nonlinear formulation is approximated by a nonlinear signomial geometric programming. According to nonconvexity and the complexity of the proposed model, an augmented Lagrangian genetic algorithm was used to find the optimum cut-off grade strategy under varying and fixed price circumstances. To validate the proposed nonlinear model efficiency, their results were compared with the results obtained by the K.F. Lane methodology. It was found that the proposed nonlinear model works efficiently in the determination of cut-off grade strategy. According to the simplicity of the structure of nonlinear programming modeling in comparison with dynamic programming it is hoped that, further development of this model would certainly provide the ability of considering managerial and technical flexibilities as well as incorporating more real mining conditions in the determination of cut-off grade strategy optimization.
PL
Opracowanie strategii określania granicznej zawartości pierwiastka użytecznego w rudzie jest jednym z najważniejszych zagadnień przy projektowaniu i planowaniu kopalni. Jest to parametr który w sposób bezpośredni wpływa na kwestie finansowe, techniczne, ekonomiczne, prawne, środowiskowe, społeczne oraz polityczne pozostające w związku z działalnością górniczą. Wybór optymalnej strategii określania granicznej zawartości pierwiastka użytecznego w rudzie zakładający maksymalizację zysków jest ważnym problemem badawczym od prawie stu lat. Liczni badacze opracowali użyteczne metody i algorytmy: programowanie liniowe, programowanie dynamiczne, kontrola optymalna. W obecnej pracy przedstawiono metodę nieliniowego programowania matematycznego z wykorzystaniem do optymalizacji strategii określania granicznej zawartości pierwiastka użytecznego w rudzie. Metoda ta uwzględnia trzy etapy prowadzenia działalności górniczej, wprowadzone przez K.F.Lane'a. W modelu tym jako kryterium optymalizacji przyjęto maksymalizację wartości bieżącej netto działalności górniczej, z uwzględnieniem trzech więzów - czyli wydajności kopalni na poszczególnych etapach. Ze uwagi na dyskretne przedstawienie zasobów górniczych, proponowana sformułowanie nieliniowe przybliżone jest nieliniowym signomialnym algorytmem programowania geometrycznego. Z uwagi na nie wypukłość i złożoność proponowanego modelu, wykorzystano rozbudowany algorytm genetyczny (Lagrangian) w celu znalezienia optymalnej strategii określania granicznej zawartości pierwiastka użytecznego w rudzie w stałych i zmiennych warunkach cenowych. Dla walidacji skuteczności proponowanego modelu nieliniowego, wyniki porównano z wynikami uzyskanymi przy użyciu metodologii K.F. Lane'a. Stwierdzono, że proponowany model nieliniowy jest skuteczny przy określaniu granicznej zawartości pierwiastka użytecznego w rudzie. Dzięki prostocie struktury modelu programowania nieliniowego w porównaniu do programowania dynamicznego, oczekiwać należy że po dopracowaniu model uwzględniać będzie także zagadnienia menedżerskie i techniczne a także, iż będzie w stanie uwzględniać większy zakres rzeczywistych warunków górniczych.
Rocznik
Strony
189--212
Opis fizyczny
Bibliogr. 66 poz., rys., tab., wykr.
Twórcy
autor
autor
  • Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, Tehran, Iran, yoosfazimi@gmail.com
Bibliografia
  • Acuña E. et al., 2009. The application of genetic algorithms to multiple period ventilation systems for multilevel mine operations. Orebody modelling and Strategic Mine Planning, (ed: R Dimitrakopoulos), 145-148.
  • Akaike A., Dagdelen, K., A strategic production scheduling method for an open pit mine, in Proceedings of the 28th APCOM 729-738.
  • Albor F., Dimitrakopoulos R., 2009. Stochastic mine design optimization based on simulated annealing: Pit limits, production schedules, multiple orebody scenarios and sensitivity analysis. IMM Trans, Mining Technology 118, 2, 80-91.
  • Asad, MWA, 2007. Optimum cut-off grade policy for open pit mining operations through net present value algorithm considering metal price and cost escalation. Engineering Computations 24, 7, 723-736.
  • Asad MWA, 2005. Cutoff grade optimization algorithm with stockpiling option for open pit mining operations of two economic minerals. Int. J. Surf. Min. Reclamation Environ. 19, 3, 176-187.
  • Ataei M., Osanloo M., 2004. Using a Combination of Genetic Algorithm and the Grid Search Method to Determine Optimum Cutoff Grades of Multiple Metal Deposits. International Journal of Surface Mining, Reclamation and Environment (IJSM)18, 1, 60-78.
  • Ataei M., Osanloo M., 2003a. Determination of optimum cutoff grades of multiple metal deposits by iterated grid search method. International Journal of Engineering Science, Iran University of science and technology 14, 2, 79-88.
  • Ataei M., Osanloo M., 2003b. Determination of optimum cutoff grades of multiple metal deposits by using golden section search. Journal of the south African institute of mining and metallurgy (SAIMM) 103, 8, 493-500.
  • Ataei M., Osanloo M., 2003c. Methods for Calculation of Optimal Cutoff Grades in Complex Ore Deposits. Journal of Mining Science 39, 5, 499-507.
  • Aytug H., Khouja M., Vergara F.E., 2003. Use of genetic algorithms to solve production and operations management problems: a review. International Journal of Production Research 41 17, 3955-4009.
  • Bascetin A., 2007. Determination of optimal cut-off grade policy to optimize NPV using a new approach with optimization factor. Journal of the South African Institute of Mining and Metallurgy 107, 2, 87-94.
  • Bazzazi A.A., Osanloo M., Karimi B., 2009. Optimal open pit mining equipment selection using fuzzy multiple attribute decision making approach. Arch. Min. Sci. 54, 2, 301-320.
  • Bellman R., 1957. Dynamic Programming. Princeton University Press, New Jersey, USA.
  • Berry E.S., 1922. Present value in its relation to ore reserves, plant capacity and grade of ore. Min. Metall. 11-6.
  • Boyd S., Kim S-J., Vandenberghe L., Hassibi A., 2007. A tutorial on geometric programming. Optim Eng 8, 67-127.
  • Callaway H.M., 1958. Economic relation of mining rate to grade of ore. Min. Eng., 470-472.
  • Callaway H.M., 1954. Basic breakeven formulas devise to simplify mine evaluation. Eng. Min. J. 90-92.
  • Cairns R.D., Shinkuma T., 2003. The choice of the cutoff grade in mining. Resources Policy 29, 75-81.
  • Cetin E., Dowd P.A., 2002. The use of genetic algorithms for multiple cutoff grade optimization. 32nd APCOM, 769-780.
  • Chang L.C., 2008. Guiding rational reservoir flood operation using penalty-type genetic algorithm. Journal of Hydrology 354, 65-74.
  • Deep K., Dipti., 2008. A self-organizing migrating genetic algorithm for constrained optimization. Applied Mathematics and Computation 198, 1, 237-250.
  • Denby B., Schofield D., 1994. Open Pit design and scheduling by use of genetic algorithms. Trans. IMM, Mining Technology 103, 21-26.
  • Douglas E.J., 1971. How to make the most of a mining investment. Min. Eng., 64-67.
  • Dowd P.A., 1976. Application of dynamic and stochastic programming to optimize cutoff grades and production rates. Trans. IMM 85, A22-31.
  • Duffi n R., Peterson E., Zener C., 1967. Geometric programming-theory and application. Wiley, New York.
  • Goldberg D.E., 1989. Genetic Algorithms in Search Optimization and Machine Learning. Addison Wesley, New York.
  • He Y. et al., 2009. Theory and method of genetic-neural optimizing cut-off grade and grade of crude ore. Expert Systems with Applications 36, 7617-7623.
  • Henning U., 1963. Calculation of cut-off grade. Can. Min. J, 54-57.
  • Holland J.H., 1992. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. Second ed., MIT Press, Cambridge, 1992.
  • Holland J.H., 1975. Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor.
  • Johnson T.B., 1968. Optimum open pit mine production scheduling. Ph.D. thesis, University of California, Berkeley, USA.
  • Katayama K., Sakamoto H., Narihisa H., 2007. The efficiency of hybrid mutation genetic algorithm for the traveling salesman problem. Mathematical and Computer Modeling 31, 197-203.
  • King B.M., 2001. Optimal mine scheduling policies, Royal School of Mines PhD, London University, United Kingdom.
  • King B.M., 1999. Cash flow grades - scheduling rocks with different throughput characteristics, in Optimizing with Whittle: Strategic Mine Planning.. 103-109 (Whittle Programming Pty Ltd: Melbourne).
  • Krautkraemer J.A., 1989. Price expectations, ore quality selection, and the supply of a nonrenewable resource. Journal of Environmental Economics and Management 16, 253-267.
  • Krautkraemer J.A., 1988. The cut-off grade and the theory of extraction. Canadian Journal of Economics 21, 1, 146-160.
  • Kumar R., (Framingham, MA, US), 2010a. System and method for performing non-linear constrained optimization with a genetic algorithm. United States, The MathWorks, Inc. (Natick, MA, US), 7672910, http://www.freepatentsonline.com/7672910.html.
  • Kumar R., (Framingham, MA, US), 2010b. System and method for the use of an adaptive mutation operator in genetic algorithms. United States, The MathWorks, Inc. (Natick, MA, US), 7660773, http://www.freepatentsonline.com/7660773.html.
  • Kumral M., Dowd P.A., 2005. A simulated annealing approach to mine production scheduling. Journal of operational research society 56, 922-930.
  • Lane K.F., 1988. The Economic Definition of Ore: Cutoff Grades in Theory and Practice. Mining Journal Books Ltd, London, UK.
  • Lane K.F., 1964. Choosing the optimum cut-off grade. Quarterly of the Colorado School of Mines 59, 811-829.
  • Ligęza P., Socha K., 2005. Modification of an algorithm for determining the gas flow velocity components in hot-wire measurement. Arch. Min. Sci. 50, 3, 289-305.
  • Mardones J., 1991. International Investment Contracting with Financial Market Segmentation: Option Valuation of a Copper Mine. Unpublished Ph.D. dissertation, Fletcher School of Law and Diplomacy, Tufts University: 383 p.
  • Mardones J., 1993. Option valuation of real assets: Application to a copper mine with operating flexibility. Resources Policy 19, 51-65.
  • Menabde M. et al., 2007. Mining Schedule Optimisation for Conditionally Simulated Orebodies. In Orebody Modelling and Strategic Mine Planning, second edition (ed: R Dimitrakopoulos), 145-148.
  • Napier J.A.L., 1983. The effect of cost and price fluctuations on the optimum choice of mine cutoff grades. Journal of the South African Institute of Mining and Metallurgy 83, 6, 117-125.
  • Oleksy A., Szymanski Z., 2010. Modern methods control and diagnostics of hoisting-machines with application of artificial intelligence methods. Arch. Min. Sci. 55, 1, 217-231.
  • Osanloo M., Rashidinejad F., Rezai B., 2008. Incorporating environmental issues into optimum cut-off grades modeling at porphyry copper deposits. Resources Policy 33 222-229.
  • Osanloo M., Ataei M., 2003. Using equivalent grade factors to find the optimum cutoff grades of multiple metal deposits. Minerals Engineering 16, 8, 771-776.
  • Osman M.S., Abo-sina M.A., Mousa A.A., 2005. An effective genetic algorithm approach to multiobjective routing problems (MORPs). Applied Mathematics and Computation 163, 769-781.
  • Rashidinejad F., Osanloo M., Rezai B., 2008. An environmental oriented model for optimum cut-off grades in open pit mining projects to minimize acid mine drainage. International Journal of Environmental Science and Technology 5, 2, 183-194.
  • Rudenno V., 1979. Determination of optimum cutoff grades. 16th APCOM, Am Inst Mining Eng, 261-268.
  • Safaei N., Sadjadi S.J., Babakhani M., 2006. An efficient genetic algorithm for determining the optimal price discrimination. Applied Mathematics and Computation 181, 1693-1702.
  • Sangit C., Cecilia C., Lucy A.L., 1996. Genetic algorithms and traveling salesman problems. European Journal of Operational Research 93, 490-510.
  • Sattarvand J., 2009. Long term open pit planning by ant colony optimization. Ph.D. dissertation, The Faculty of Georesources and Materials Engineering, RWTH Aachen University: 144 p.
  • Shen P., Ma Y., Chen Y., 2008. A robust algorithm for generalized geometric programming. Journal of Global Optimization 41, 593-612.
  • Shinkuma T., Nishiyama T., 2000. The grade selection rule of the metal mines; an empirical study on copper mines. Resources Policy 26, 31-38.
  • Sikora M., Sikora B., 2006. Application of machine learning for prediction a methane concentration in a coal-mine. Arch. Min. Sci. 51, 4, 475-492.
  • Smith M.L., O'Rourke A., 2005. The connection between production schedule and cut-off optimization in underground mines. 32nd APCOM, 643-654.
  • Taylor H.K., 1985. Cut-off grades-some further reflection. Trans. IMM 94, 204-216.
  • Taylor H.K., 1972. General background theory of cutoff grades. Trans. IMM 81, A160-179.
  • Vayenas N., Yuriy G., 2005. GenRel-a computer model for prediction of mining equipment failures based on genetic algorithms (GAs). International Journal of Surface Mining, Reclamation and Environment 19, 1, 3-11.
  • Whittle J., Wharton C., 1995. Optimizing cut-offs over time. 25th APCOM, 261-265.
  • Wooller R., 1997. Who needs mine and mill constraints? Proceedings of Optimizing with Whittle: Strategic Mine Planning (Whittle Programming Pty Ltd: Melbourne).
  • Wu J-u, Chung Y-K., 2007. Real-Coded Genetic Algorithm for Solving Generalized Polynomial Programming Problems. Journal of Advanced Computational Intelligence and Intelligent Informatics 11, 4, 358-364.
  • Yi R., Sturgul J.R., 1999. Economic significance of sub-cutoff grades in open pits operating with concentrator bottleneck. Mineral Resources Engineering 8, 2, 95-203.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ5-0021-0013
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.