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Abstract: The work presents the results of studies on dependence of effectiveness of cho-
sen robust estimation methods from the internal reliability level of a geodetic network.
The studies use computer-simulated observation systems, so it was possible to analyse many
variants differing from each other in a planned way. Four methods of robust estimation have
been chosen for the studies, differing substantially in the approach to weight modifications.
For comparative reasons, the effectiveness studies have also been conducted for the very
popular method in surveying practice, of gross error detection basing on LS estimation re-
sults, the so called iterative data snooping. The studies show that there is a relation between
the level of network internal reliability and the effectiveness of robust estimation methods.
In most cases, in which the observation contaminated by a gross error was characterized by
a low index of internal reliability, the robust estimation led to results being essentially far
from expectations.
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1. Introduction

Despite the fact that there exists a wide literature spectrum within this domain, the
subject of gross error detection in geodetic networks is still being discussed. Generally,
the existing methods of gross error detection can be divided into two groups. The first
one is formed by methods, in which by use of statistical tests, the results of least squares
adjustment (LS) are being analysed in many different ways (i.e. Pope, 1976; Ethrog,
1991; Nowak, 2002). It is often an iterative process, where in the successive iterations,
the one observation suspected to be contaminated with a gross error is being eliminated
from the network (i.e. Baarda, 1968). In some of the methods out of this group one takes
the effort to accelerate the „cleaning” process of the observation system by assessing
the correlation level of observations suspected to have gross errors. On this basis, one
takes the decision to eliminate simultaneously more than one observation (i.e. Cross and
Price, 1985; Ding and Coleman, 1996). The second group is constituted by methods, in
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which basing on criteria of the so-called robust estimation, one minimizes the influence
of outlying observations on the final result of network adjustment. Such estimation
is performed during an iterative process, where in each iteration one modifies the
observation weights (e.g. Kadaj, 1984; Wiśniewski, 1993; Kamiński and Wiśniewski,
1994; Aduol, 1999). Unfortunately all these methods are sensible towards the weakness
of geodetic network structure, especially the so called „masking effect” in case of
multiple gross errors occurring within the network.

In recent years, many works appeared in the literature, in which for the detection
of gross errors one was trying to use a priori knowledge, which is not connected with
the adjustment process. The work (Kamiński, 2000) presents the utilization of Bayesian
estimation for the adjustment of geodetic networks, where the measurements could be
contaminated by gross errors. For this purpose one uses the Bayesian formula, as well
as the rules of robust estimation. In turn, in (Xu, 2005) a robust method of outlier
detection is presented, in which the estimation of the so-called subjective breaking
point was based on a priori distribution for the signs of outliers. According to the
author, this method allows to obtain a correct estimation result even when more than
50% contaminated observations exist in the network. Also in the work (Gui et al., 2007)
the knowledge of a priori information on the unknown parameters has been assumed.
Considering this assumption and assuming the independence of observations, basing
on the principle of Bayesian statistical inference one gave the formulae for a posteriori
probability calculation that the observation or several observations contain gross errors.

In most of publications related to gross error detection, the presented solutions
are illustrated with a specific numerical example, without assessment of their actual
effectiveness. In a few publications one can find the results of comparative analyses
of chosen methods. Results of effectiveness assessment of several robust estimation
methods on the examples of a simulated trilateral, triangular and angle-linear networks
were presented (e.g. Hekimoglu and Berber, 2003). An insufficient effectiveness of
these methods has been stated, even when a single gross error exists in the network.
Also the effectiveness of classical statistic tests conducted on LS results has been
compared with the effectiveness of chosen robust estimation methods (Knight and
Wang, 2009). It has been stated that in case of a single gross error, the classical tests
gave slightly better results than the robust estimation. However, as the number of gross
errors were growing, the robust estimation turned out to be more effective.

In the present study the author took up the effort to find, if the internal reliability
influences the results of robust estimation in case of the appearance of a single gross
error in the network.

2. Chosen robust estimation methods

To obtain estimation results free of the influence of gross errors occurring in the obser-
vation system it is necessary to whether identify and eliminate the so-called outlying
observations, or use such estimation method, in which the outliers will not influ-
ence the obtained results. Among many approaches to robust estimator construction,
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the highest popularity during the late years gained methods based on the so-called
M-estimation. The theoretical basis of M-estimation has been proposed in (Huber,
1964). M-estimators are the most general ones; they constitute a generalization of
maximum likelihood estimators (hence the name M) and are characterized by a high
efficiency.

In M-estimation the objective function has the form

Ψ[v(x)] =

n∑

i=1

ρi[vi(x)] =

n∑

i=1

ρi(vi) (1)

where ρi(vi) is a component of the objective function, v(x) is a vector of residuals, x
is a vector of estimated parameters and n is a number of observations. Depending on
the shape of the objective function (convex or concave) one is looking for a global
minimum or maximum of this function. To unify the approach of different methods
one can transform the optimization criterion using one of the formulae (Wiśniewski,
1991)

min
x

Ψ[v(x)] = −max
x
{−Ψ[v(x)] (2)

max
x

Ψ[v(x)] = −min
x
{−Ψ[v(x)]} (3)

Properties of M-estimation methods are determined by analysing the properties of the
component of the objective function. Useful are also the following functions (Kamiński
and Wiśniewski, 1992):
• influence function φ(v) = dρ(v)/d(v) which determines the impact of change in

individual observation on the result of estimation;
• weight function w(v) = dρ(v)/d(v2) which determines the impact of each observation

on the estimation result.

The M-estimation methods elaborated so far present different approaches to the
definition of modified values of weights assigned to observations. Constant coefficients,
being a critical value for the weight function occur in many of them. The proper choice
of values of those coefficients requires a good recognition of data set distribution and
may have a significant impact on the results of the estimation (Xu, 1993).

There are two ways to implement M-estimation. The first one is the use of nonlinear
algorithms, and the other is a modified method of LS. The second way constitutes
a group of methods which use the iteratively re-weighted LS algorithm, but differ in
a weight function. A special case of a method from this group is LS estimation

ρLS(v) = pv2 (4)

ϕLS(v) = 2pv (5)

wLS(v) = p (6)

where v is a residual and p is a weight of observation.
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The LS estimation is not robust, because the influence function is not bounded
and the outlying observations could dominate conforming observations, which fit the
selected network model.

Below are presented the characteristic functions for the methods chosen for studies
discussed in this paper.

2.1. An Alternative to the Method of Least Absolute Deviations (ALAD)

This method has been proposed in (Kadaj, 1988; Wiśniewski, 1993) as an alternative
to the method of least absolute deviations. Basing on the general dependence of

lim
c→0

√
x2 + c2 = |x| (7)

where x is an argument and c is the sufficiently small constant value (c → 0), one
accepted a component of the objective function in following form

ρALAD(v) = p
√

v2 + c2 (8)

where v is the residual and p is the initial weight of observation.
The resulting influence function ϕALAD(v) and the weight function wALAD(v) have

the following form
ϕALAD(v) = p

v√
v2 + c2

(9)

wALAD(v) = p
1

2
√

v2 + c2
(10)

2.2. Huber Method (HU)

In the method proposed by Huber (1964), the component of the objective function is
a spline having the following form

ρHU(v) =



1
2

pv2 for |v| ≤ c

p
(
c |v| − c2

2

)
for |v| > c

(11)

where p is the initial value of observation weight and c is a constant value representing
the permitted value for residuals (v ∈ 〈−c; c〉).

The influence function ϕHU(v) as well as weight function wHU(v) have the follo-
wing forms

ϕHU(v) =


pv for |v| ≤ c

pc · sgn(v) for |v| > c
(12)
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wHU(v) =



1
2

p for |v| ≤ c
1
2

p
c
|v| for |v| > c


(13)

2.3. A Choice Rule of Alternative (CRA)

The method presented by Kadaj (1984) has been named “A Choice Rule of Alternative”.
One searches the maximum of global objective function. To unify the approach with
other methods selected for this paper, in which one searches the minimum of global
objective function, we will consider here the transformation (3). Then the characteristic
functions of this method will take following forms:
• component of the objective function

ρCRA(v) = −exp
(
− v2

2σ2

)
(14)

where σ2 is the variance of observation, being defined before adjustment;
• influence function

ϕCRA(v) = pv · exp
(
−p

v2

2

)
where p = σ−2 (15)

• weight function

wCRA(v) =
1
2

p · exp
(
−p

v2

2

)
(16)

2.4. Aduol Method (AD)

Aduol (1999) presented the method of robust estimation based on the following model
of observation contaminated by a gross error

ỹ = y + b + ε (17)

where y is the true value of observation; b is the gross error, ε is a random error of
measurement. Into such observation one introduces the notion of mean squared error
m

m2 = σ2 + b2 (18)

where σ2 is an observation variance. Considering that

E(v) = E(b + ε) = b + E(ε) = b (19)
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where E(·) means the expected value, one proposes the calculation of observation
weights in subsequent iterations of LS estimation according to the formula

wi =
σ2

0

m2
i

=
σ2

0

σ2 + v2 (20)

Calculated on this basis the component of objective function and the influence function
have the following forms

ρAD(v) = σ2
0 · ln

(
σ2 + v2

)
(21)

ϕAD(v) =
2vσ2

0

σ2 + v2 (22)

Out of the formulae presented above one can read the basic assumption of robust
methods: the observation having the greater residual should have a lower weight.

2.5. Iterative data snooping (IDS)

This method is a commonly known iterative method based on the LS estimation results.
Basing on the theory of data snooping (Baarda, 1968), for uncorrelated observations,
the normalized residual u should fulfil the test

u =
|v|
σv
≤ kα (23)

where v and σv are residual and its standard deviation, respectively, obtained from
the LS estimation and kα is a critical value taken from N(0,1) for the selected test
relevance level α. The identification of gross errors within the observation system is
based on putting of each observation to the test. In case of observations not fulfilling the
criterion (23), the observation having the highest u is considered as the most suspected
to be contaminated by a gross error. In the following iteration, the LS estimation is
conducted without the suspected observation. Rejecting observations in subsequent
iterations means that this method is not based on the estimation of a fixed objective
function.

This method has been chosen for studies because of frequent result compari-
sons of proposed robust methods with the LS results acquired out of first iteration.
The subsequent part of this study assumes that the observations are not correlated and
the network model is linear or linearized.

3. Assumptions and criterions for evaluation the selected methods

Because of a restricted volume of this paper, the presentation of results obtained will
be done on the example of a simple 5-point levelling test network (Fig. 1).
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Fig. 1. Test levelling network

Table 1 shows 8 variants of exactitude relations (σh,i) (i = 1, 2, ..., 8) between
observations in the network (further called: network variants), together with the cal-
culated internal reliability indices (σV ) for them. These indices are calculated as
σV,i =

√
{R}i,i where R = I − As(AT

s As)−1AT
s and As is the design matrix of full

rank in standardized system of equations.

Table 1. Network variants and internal reliability indices of observations

Obs.
No.

Variant 1 Variant 2 Variant 3 Variant 4 Variant 5 Variant 6 Variant 7 Variant 8
σh,i σV,i σh,i σV,i σh,i σV,i σh,i σV,i σh,i σV,i σh,i σV,i σh,i σV,i σh,i σV,i

1 0.65 0.82 0.25 0.49 0.50 0.74 0.45 0.85 0.65 0.88 0.25 0.67 0.75 0.89 0.15 0.34
2 0.25 0.50 0.50 0.66 0.45 0.71 0.65 0.82 0.25 0.41 0.75 0.85 0.15 0.26 0.65 0.77
3 0.50 0.88 0.45 0.82 0.65 0.85 0.25 0.53 0.75 0.89 0.15 0.42 0.65 0.92 0.25 0.58
4 0.45 0.64 0.65 0.93 0.25 0.44 0.75 0.94 0.15 0.27 0.65 0.84 0.25 0.40 0.50 0.83
5 0.65 0.84 0.25 0.55 0.75 0.91 0.15 0.33 0.65 0.87 0.25 0.68 0.50 0.77 0.45 0.87
6 0.25 0.44 0.75 0.86 0.15 0.31 0.65 0.81 0.25 0.48 0.50 0.63 0.45 0.72 0.65 0.77
7 0.75 0.94 0.15 0.26 0.65 0.93 0.25 0.42 0.50 0.80 0.45 0.68 0.65 0.87 0.25 0.47
8 0.15 0.35 0.65 0.82 0.25 0.50 0.50 0.72 0.45 0.75 0.65 0.80 0.25 0.50 0.75 0.84

Figure 2 presents the variation scope of internal reliability indices for individual
observations when combining all 8 variants.

Each of the network variants has been used to studies in 5 following versions of
the random error vector

ε0 =



0
0
0
0
0
0
0
0



ε1 = σh



1.042
0.627
−1.873
−1.628
−0.134
−0.933
0.300
−0.307



ε2 = σh



−0.423
−0.203
−1.297
−0.852
−2.051
0.748
−0.593
0.775



ε3 = σh



−0.680
−0.381
−0.188
0.912
−1.229
0.111
1.198
1.217



ε4 = σh



−0.280
−0.861
0.752
−1.743
1.546
−0.196
−0.871
−0.719
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Fig. 2. Variation of internal reliability indices for observations in test network

where σh = diag (σ1, σ2, ..., σ8) is the matrix of a priori average errors of observations.
Considering that in each of the network variant, each observation was disturbed

by a gross error, 320 estimations in total were performed for each method.
The gross error size gi introduced into each observation has been established as

1.5 times bigger than the minimum detectable gross error being proposed in (Baarda,
1968)

gi = 1.5 · ∆min,i = 1.5 · 4.1 · σh,i

σV,i
(24)

For the studies reported it has been assumed that the LS estimation results obtained
for the observation system affected only by random errors (ε0, ε1, ..., ε4) within the
accepted range will constitute a reference (ref) for the results obtained by the use of
selected method (met) for systems contaminated by a gross error.

To evaluate the distance from the solution vector xmet to the expected solution
vector xre f two indices were introduced

1. average deviation ∆xav calculated as

∆xav =

√√√√ u∑
i=1

(xmet
i − xre f

i )2

u
,with u − number of rows of the solution vector x (25)

2. maximum deviation ∆xmax calculated as

∆xmax = max
i

(
∣∣∣∣xmet

i − xre f
i

∣∣∣∣ ), i = 1, 2, ..., u (26)

An additional index used in the studies is the compensation level of the gross error g
in the residual vmet for the actually disturbed observation, calculated as

g% =

∣∣∣∣∣∣
vmet − vre f

g

∣∣∣∣∣∣ · 100% (27)
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4. Illustration of obtained results

Because of the big size of tables containing numerical settings, the obtained results
are presented in a graphical form. For each method investigated the relations between
the indices ∆xav, ∆xmax, as well as g% and the reliability index σV of the observation
disturbed by a gross error are illustrated.

ALAD method

Fig. 3. ALAD method – dependence of ∆xav, ∆xmax and g% indices from the reliability level
of disturbed observation

The graphs presented in Figure 3 show that the reliability index of disturbed
observation has a significant influence on the effectiveness of ALAD method. Only
when it reaches the value of about 0.7, the effectiveness of this method can be assumed
satisfactory. The fourth graph (bottom right in Figure 3) illustrates the dependence of
the index ∆xav on the index of internal reliability of disturbed observation σV for ε0
network variant. This graph shows that different values of the constant c, which should
be close to 0, give insignificant differences in estimation results.

HU method
As it results from graphs showed in Figure 4, the HU method behaves very similarly

to the ALAD method. Only when the reliability index of disturbed observation reaches
the value of about 0.7, the effectiveness of this method can be assumed satisfactory.
Similarly as for method ALAD, different values of the constant c give small differences
in estimation results (see bottom right graph in Figure 4).

CRA method
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Fig. 4. HU method – dependence of ∆xav, ∆xmax and g% indices from the reliability level
of disturbed observation

As it results from Figure 5, the CRA method behaves in a different way than both
methods discussed so far. The effectiveness of this method can be assumed satisfactory
even from the reliability index value for disturbed observation of about 0.5, though
before reaching the value of 0.7 there is a probability of wrong identification of outliers.
This could be the reason of especially unfavourable random errors dispersion within
the network.

AD method
The graphs presented in Figure 6 show that the AD method behaves similarly to

the CRA method. In both methods no constant coefficients are used. The effectiveness
of this method can be considered satisfactory for the reliability index value of disturbed
observation being larger than 0.5.

IDS method
As already mentioned in the method description, the decision to terminate the

iterative estimation process by this method was based on the fulfilment of the criterion
(23) for each observation within the network. The graphs presented in Figure 7 show
that the utilized assessment indices of estimation results (∆xav, ∆xmax, and g%) are
significantly better than for the analysed robust methods. Only in 7 cases (for 320
considered), the IDS method (kα = 2.5) wrongly detected the disturbed observation.
The reason for these failures is not a low reliability index of disturbed observations but
far more an unfavourable dispersion of random errors within the network. However,
the effectiveness of this method depends on the accepted critical value kα. To compare,
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Fig. 5. CRA method – dependence of ∆xav, ∆xmax and g% indices from the reliability level
of disturbed observation

Fig. 6. AD method – dependence of ∆xav, ∆xmax and g% indices from the reliability level
of disturbed observation
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Fig. 7. IDS method (kα = 2.5) – dependence of ∆xav, ∆xmax and g% indices from the reliability level
of disturbed observation

Fig. 8. IDS method (kα = 2) – dependence of ∆xav, ∆xmax and g% indices from the reliability level
of disturbed observation
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Figure 8 shows the graphs of ∆xav, ∆xmax and g% indices for the IDS method at
kα = 2.0. In this case, the method 62 times wrongly detected observations contaminated
by a gross error.

The results presented above concern one specific levelling network structure.
To confirm resulting conclusions, below are presented results of additional study.
The design matrix A has been substituted by 5 different matrices having identical
dimensions but randomly set element values. Furthermore, only the variant of faultless
observations (ε0) with a single gross error, having its size defined according to (24)
was used.

A1 =



0.75 0.00 0.68 0.00 0.46
−0.70 −0.60 0.34 0.00 0.88
0.82 0.98 0.53 0.00 0.99
0.00 0.00 0.00 0.89 −0.73
−0.60 0.96 −0.80 0.00 0.00
0.00 0.00 0.40 −0.94 −0.49
0.00 −0.80 0.37 0.00 −0.60
0.74 −0.30 −0.50 −0.32 0.00



A2 =



0.00 0.77 0.00 0.77 0.41
0.00 0.00 −0.51 0.76 0.94
−0.54 −0.72 0.82 0.46 0.74
−0.41 0.00 0.35 −0.83 0.00
0.00 −0.57 0.00 0.00 −0.68
0.33 0.48 0.00 0.48 0.00
0.65 −0.47 0.35 −0.45 −0.75
0.61 0.55 −0.73 0.00 −0.87



A3 =



0.00 −1.76 1.86 −1.56 0.00
−1.82 −0.73 −1.79 0.00 0.00
−0.69 −1.84 0.00 1.21 −1.17
0.00 −1.93 −1.52 −1.96 0.00
−0.69 0.00 1.69 0.00 1.29
0.00 −0.74 1.22 −1.24 −0.68
0.66 0.81 1.14 −0.86 0.74
0.71 0.00 0.00 1.76 1.64



A4 =



1.81 0.00 1.10 2.73 −1.42
−2.82 0.98 0.00 −1.89 2.67
−1.11 −2.10 1.03 0.00 0.00
0.00 −1.84 2.78 2.76 2.07
2.13 −1.58 0.00 2.01 0.00
−1.07 1.72 −1.13 1.87 0.00
2.62 0.00 1.23 0.00 1.62
0.98 −1.03 1.74 0.00 −2.60



A5 =



0.00 −2.30 2.60 −2.86 0.00
−2.05 −1.99 −3.99 −2.14 −2.38
0.00 2.90 −2.20 0.00 −2.00
2.30 0.00 0.00 −3.00 3.71
1.62 1.57 −2.40 −3.10 0.00
3.87 2.99 −3.70 2.46 −1.70
2.71 −1.40 0.00 −2.80 2.85
−2.40 0.00 0.00 0.00 1.53



The graphs presented in Figure 9 confirm that the correctness of robust estimation
results depends on the level of internal reliability of observation contaminated by a
gross error.

It could easily be verified that identical studies lead for a properly strong geodetic
network structure would show satisfying effectiveness of single gross error detection
by the use of robust estimation methods analysed in this paper. For example, to the
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levelling network presented in Figure 1 four observations (bold line in Fig. 10) were
added and it has been assumed that all observations are equally precise.

Fig. 9. Dependence of ∆xav (symbol ◦), ∆xmax (symbol ×) indices from the reliability level
of disturbed observation

Fig. 10. Reinforced test levelling network

For such network, the internal reliability indices for all observations are included
within the range <0.79, 0.83>. Figure 11 shows the graphs of indices ∆xav and g%
obtained for the HU method (c = 2). For the remaining methods, a similar image of
∆xav and g% indices was obtained.
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Fig. 11. Graphs of ∆xav and g% indices obtained for the HU method

5. Conclusions

The results of research presented in the paper entitle to formulate the following con-
clusions.

1. The effectiveness of gross error detection by the use of robust estimation methods
depends on the level of internal reliability of a geodetic network. All analysed
methods provided satisfactory results only at an appropriate high reliability level
of observation disturbed by a gross error. For the ALAD and HU method, this
level was σV ≥ 0.7. The CRA and AD methods provided satisfactory results even
at σV ≥ 0.5. In case of a gross error occurring in an observation having a low
reliability index, the robust estimation results could not be correct.

2. Basing on results showed in Figure 9, acquired for faultless observations disturbed
by single gross error, it can be stated that:
a) CRA and AD methods, where no constant parameters were being used, pro-

vided better results than HU and ALAD methods. For the latter, the change
of the constant parameter value does not cause any significant changes in the
effectiveness of a gross error detection;

b) the highest effectiveness of a gross error detection has been stated for the CRA
method and the lowest for the HU method.

3. From the dispersion of ∆xav, ∆xmax and g% indices presented in Figures 3÷6 it
results that the correctness of a gross error detection depends also on the dispersion
of random errors within the network. In some cases, despite a high reliability index
of disturbed observation, the estimation results were not correct. Opposite situations
happened as well.

4. The additionally used IDS method showed a quite good detection effectiveness
of the gross error being introduced into the observation. The effectiveness of this
method depends also on the parameter kα value:
– when kα = 2.5, the IDS method detected correctly the disturbed observation in

97.3% variants of observation systems;
– when kα = 2.0, the effectiveness of this method was only as much as 76.2%.

5. The results of research presented above confirm the conclusion in the paper
(Prószyński, 1994) that for an effective detection of a single gross error, the geode-
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tic network should be designed in such way that for each observation the relation
σV ≥ 0.71 was fulfilled.

6. In the case of two or more gross errors appearing in the network, a significant
decrease of efficiency of tested methods is expected. Studies within this scope are
continued.
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Streszczenie

W pracy przedstawiono wyniki badań nad zależnością skuteczności wybranych metod estymacji odpornej
od poziomu niezawodności wewnętrznej sieci geodezyjnej. W badaniach wykorzystano symulowane kom-
puterowo układy obserwacyjne, dzięki czemu możliwe było przeanalizowanie wielu wariantów różniących
się w zaplanowany sposób. Do badań wybrano cztery metody estymacji odpornej różniące się istotnie
podejściem do modyfikacji wag. Dla porównania, badaniom skuteczności poddano również popularną
w praktyce geodezyjnej metodę wykrywania błędów grubych bazującą na wynikach estymacji MNK, tzw.
metodę Baardy. Z przeprowadzonych badań wynika, że istnieje związek pomiędzy poziomem niezawod-
ności wewnętrznej sieci a skutecznością metod estymacji odpornej. W większości przypadków, w których
obserwacja obarczona błędem grubym charakteryzowała się niskim wskaźnikiem niezawodności wewnętrz-
nej, estymacja odporna prowadziła do uzyskania wyników istotnie odbiegających od oczekiwanych.




