PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improved implementation of the extended finite element method for stress analysis around cracks

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Udoskonalone zastosowania rozszerzonej metody elementów skończonych do analizy naprężeń wokół pęknięcia
Języki publikacji
EN
Abstrakty
EN
Although the extended finite element method (XFEM) allows for modelling arbitrary discontinuities, its low order elements often means that frequent improvements on accuracy are required. The generalized finite element method (GFEM), the extension of the conventional FEM, improves the approximation accuracy of the FEM by introducing generalized degrees of freedom and re-interpolating nodal degrees of freedom. This paper enhances the implementation of the XFEM for stress analysis around cracks by coupling the GFEM and XFEM. The generalized node shape functions are used in a cluster of nodes around the cracks, and the conventional finite element shape functions are adopted at nodes outside the cracks, thereby reducing costs and improving the accuracy of stresses in the vicinity of the cracks. Several numerical examples show that the proposed approach generates higher accuracy for stress intensity factor computations at affordable costs.
PL
Pomimo że rozszerzona metoda elementów skończonych (XFEM) pozwala modelować przypadkowe nieciągłości, metoda ta wymaga poprawy dokładności. Można to uzyskać poprzez zastosowanie dodatkowych metod modelowania. W pracy przedstawiono zastosowanie połączonych metod GFEM i XFEM do analizy naprężeń wokół pęknięcia. Kilka numerycznych przykładów wykazało, że proponowane podejście pozwala uzyskać lepszą dokładność od metod dotychczas stosowanych.
Rocznik
Strony
787--805
Opis fizyczny
Bibliogr. 45 poz., rys., tab., wykr.
Twórcy
autor
autor
  • Dept. of Engineering Mechanics, Hohai University, Nanjing 210098, China
Bibliografia
  • [1] Areias P.M.A., Belytschko T.: Two-scale shear band evolution by local partition of unity, International Journal for Numerical Methods in Engineering, Vol. 66, No. 5, 2006, pp. 878-910.
  • [2] Béchet E., Minnebo H., Moës N., Burgardt B.: Improved implementation and robustness study of the X-FEM for stress analysis around cracks, International Journal for Numerical Methods in Engineering, Vol. 64, No. 8, 2005, pp. 1033-1056.
  • [3] Belytschko T., Black T.: Elastic crack growth in finite elements with minimal remeshing, International Journal for Numerical Methods in Engineering, Vol. 45, No. 5, 1999, pp. 601-620.
  • [4] Belytschko T., Gracie R., Ventura G.: A review of extended/generalized finite element methods for material modelling, Modelling and Simulation in Materials Science and Engineering, Vol. 17, No. 4, 2009, pp. 043001.
  • [5] Chessa J., Wang H., Belytschko T.: On the construction of blending elements for local partition of unity enriched finite elements, International Journal for Numerical Methods in Engineering, Vol. 57, No. 7, 2003, pp. 1015-1038.
  • [6] Du I.S., Reid J.K.: The multifrontal solution of indefinite sparse symmetric linear systems, ACM Transactions on Mathematical Software, Vol. 9, No. 3, 1983, pp. 302-325.
  • [7] Duarte C.A., Babuška I., Oden J.T.: Generalized finite element methods for three-dimensional structural mechanics problems, Computers and Structures, Vol. 77, No. 2, 2000, pp. 215-232.
  • [8] Duddu R., Bordas S., Chopp D., Moran B.: A combined extended finite element and level set method for biofilm growth, International Journal for Numerical Methods in Engineering, Vol. 74, No. 5, 2008, pp. 848-870.
  • [9] Duflot M., Bordas S.: A posteriori error estimation for extended finite elements by an extender global recovery, International Journal for Numerical Methods in Engineering, Vol. 76, No. 8, 2008, pp. 1123-1138.
  • [10] Elguedj T., Gravouil A., Combescure A.: Appropriate extended functions for X-FEM simulation of plastic fracture mechanics, Computer Methods in Applied Mechanics and Engineering, Vol. 195, No. 7-8, 2006, pp. 501-515.
  • [11] Fries T.P.: A corrected XFEM approximation without problems in blending elements, International Journal for Numerical Methods in Engineering, Vol. 75, No. 5, 2008, pp. 503-532.
  • [12] Fries T.P., Belytschko T.: The extended/generalized finite element method: An overview of the method and its applications, International Journal for Numerical Methods in Engineering, Vol. 84, No. 3, 2010, pp. 253-304.
  • [13] Gerstenberger A., Wall W.A.: An eXtended finite element method/Lagrange multiplier based approach for fluid-structure interaction, Computer Methods in Applied Mechanics and Engineering, Vol. 197, No. 19-20, 2008, pp. 1699-1714.
  • [14] Gravouil A., Moës N., Belytschko T.: Non-planar 3d crack growth by the extended finie element and level sets-part ii: level set update, International Journal for Numerical Methods in Engineering, Vol. 53, No. 11, 2002, pp. 2569-2586.
  • [15] Groß S., Reusken A.: An extended pressure finite element space for two-phase incompressible flows with surface tension, Journal of Computational Physics, Vol. 224, No. 1, 2007, pp. 40-58.
  • [16] Iarve E.V.: Mesh independent modelling of cracks by using higher order shape functions, International Journal for Numerical Methods in Engineering, Vol. 56, No. 6, 2003, pp. 869-882.
  • [17] James V.C.: An extended finite element method with analytical enrichment for cohesive crack modelling, International Journal for Numerical Methods in Engineering, Vol. 78, No. 1, 2009, pp. 48-83.
  • [18] Jörg F.U., Stefan E., Carsten K.: Modelling of cohesive crack growth in concrete structures with the extended finite element method, Computer Methods in Applied Mechanics and Engineering, Vol. 196, No. 41-44, 2007, pp. 4087-4100.
  • [19] Jovicic G., Zivkovic M., Jovicic N., Milovanovic D.: Improvement of algorithm for numerical crack modelling, Archives of civil and mechanical engineering, Vol. X, No. 3, 2010, pp. 19-35.
  • [20] Karihaloo B.L., Xiao Q.Z.: Modelling of stationary and growing cracks in FE framework without remeshing: a state-of-the-art review, Computers and Structures, Vol. 81, No. 3, 2003, pp. 119-129.
  • [21] Liang G.P., He J.H.: Generalized finite element method - a new finite element space (In Chinese), advances in mechanics, Vol. 25, No. 4, 1995, pp. 562-565.
  • [22] Liu X.Y., Xiao Q.Z., Karihaloo B.L.: XFEM for direct evaluation of mixed mode SIFs In homogeneous and bi-materials, International Journal for Numerical Methods in Engineering, Vol. 59, No. 8, 2004, pp. 1103-1118.
  • [23] Melenk J.M.: On generalized finite element methods, PhD Thesis, University of Maryland, 1995.
  • [24] Melenk J.M., Babuska I.: The partition of unity finite element method: basic theory and applications, Computer Methods in Applied Mechanics and Engineering, Vol. 139, No. 1-4, 1996, pp. 289-314.
  • [25] Menouillard T., Belytschko T.: Dynamic fracture with meshfree enriched XFEM, Acta Mechanica, Vol. 213, No. 1-2, 2010, pp. 53-69.
  • [26] Menouillard T., Belytschko T.: Correction Force for releasing crack tip element with XFEM and only discontinuous enrichment, European Journal of Computational Mechanics, Vol. 18, No. 5-6, 2009, pp. 465-483.
  • [27] Menouillard T., Réthoré J., Moës N., Combescure A., Bung H.: Mass lumping strategies for X-FEM explicit dynamics: Application to crack propagation, International Journal for Numerical Methods in Engineering, Vol. 74, No. 3, 2008, pp. 447-474.
  • [28] Menouillard T., Song J.H., Duan Q.L., Belytschko T.: Time dependent crack tip enrichment for dynamic crack Propagation, International Journal of Fracture, Vol. 162, No. 1-2, 2010, pp. 33-49.
  • [29] Moës N., Dolbow J., Belytschko T.: A finite element method for crack growth without remeshing, International Journal for Numerical Methods in Engineering, Vol. 46, No. 1, 1999, pp. 131-150.
  • [30] Moës N., Gravouil A., Belytschko T.: Non-planar 3d crack growth by the extended finie element and level sets-part i: mechanical model, International Journal for Numerical Methods in Engineering, Vol. 53, No. 11, 2002, pp. 2549-2568.
  • [31] Oswald J., Gracie R., Khare R., Belytschko T.: An extended finite element method for dislocations in complex geometries: Thin films and nanotubes, Computer Methods in Applied Mechanics and Engineering, Vol. 198, No. 21-26, 2009, pp. 1872-1886.
  • [32] Rabczuk T., Bordas S., Zi G.: On three-dimensional modelling of crack growth using partition of unity methods, Computers and Structures, Vol. 88, No. 23-24, 2010, pp. 1391-1411.
  • [33] Ródenas J.J., González-Estrada O.A., Tarancón J.E., Fuenmayor F.J., Valenciana G.: A recovery type error estimator for the extended finite element method based on singular smooth stress field splitting, International Journal for Numerical Methods in Engineering, Vol. 76, No. 4, 2008, pp. 545-571.
  • [34] Shibanuma K., Utsunomiya T.: Reformulation of XFEM based on PUFEM for solving problem caused by blending elements, Finite Elements in Analysis and Design, Vol. 45, No. 11, 2009, pp. 806-816.
  • [35] Stazi F.L., Budyn E., Chessa J., Belytschko T.: An extended finite element method with higher-order elements for curved cracks, Computational Mechanics, Vol. 31, No. 1-2, 2003, pp. 38-48.
  • [36] Strouboulis T., Babuska I., Copps K.: The design and analysis of the generalized finite element method, Computer Methods in Applied Mechanics and Engineering, Vol. 181, No. 1, 2000, pp. 43-69.
  • [37] Sukumar N., Huang Z.Y., Prévost J.-H., Suo Z.: Partition of unity enrichment for bimaterial interface cracks, International Journal for Numerical Methods in Engineering, Vol. 59, No. 8, 2004, pp. 1075-1102.
  • [38] Sukumar N., Moës N., Moran B., Belytschko T.: Extended finite element method for three-dimensional crack modelling, International Journal for Numerical Methods in Engineering, Vol. 48, No. 11, 2000, pp. 1549-1570.
  • [39] Tada H., Paris P.C., Irwin R.: The stress analysis of cracks (Handbook), Del Research Corporation, Hellertown, Pennsylvania, 1973.
  • [40] Tian R., Yagawa G., Terasaka H.: Linear dependence problems of partition of unity-based generalized FEMs, Computer Methods in Applied Mechanics and Engineering, Vol. 195, No. 37-40, 2006, pp. 4768-4782.
  • [41] Xiao Q.Z., Karihaloo B.L.: Improving the accuracy of XFEM crack tip fields using higher order quadrature and statically admissible stress recovery, International Journal for Numerical Methods in Engineering, Vol. 66, No. 9, 2006, pp. 1378-1410.
  • [42] Xu Y.J., Yuang H.: Computational modelling of mixed-mode fatigue crack growth Rusing extended finite element methods, International Journal of Fracture, Vol. 159, No. 2, 2009, pp. 151-165.
  • [43] Yau J.F., Wang S.S., Corten H.T.: A mixed-mode crack analysis of isotropic solids rusing conversation laws of elasticity, Journal of Applied Mechanics, Vol. 47, No. 2, 1980, pp. 335-341.
  • [44] Yazid A., Abdelkader N., Abdelmadjid H.: A state-of-the-art review of the X-FEM for computational fracture mechanics, Applied Mathematical Modelling, Vol. 33, No. 12, 2009, pp. 4269-4282.
  • [45] Zamani A., Gracie R., Eslami M.R.: Higher order tip enrichment of extended finite element method in thermoelasticity, Computational Mechanics, Vol. 46, No. 6, 2010, pp. 851-866.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ5-0019-0038
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.