PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of generative technologies in the design of reduced stiffness stems of hip joint endoprosthesis

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Zastosowanie technologii generatywnych w konstrukcji trzpieni endoprotezy stawu biodrowego o obniżonej sztywności
Języki publikacji
EN
Abstrakty
EN
This paper presents proposed new design solutions for hip endoprosthesis stems characterised by reduced stiffness as a result of application of internal lattice structures obtained using generative production techniques. The conducted analysis showed the possibility of achieving lattice structures inside implants as well as the possibility of controlling mechanical characteristics of the end forms of implants. It was demonstrated that the use of inner lattice structures resulted not only in reduced implant stiffness, but also in reduced formation of adverse cancellous tissue trabecular structures. The obtained results indicate that it is possible to obtain implant structures that are much less vulnerable to the stress shielding effect than traditional designs.
PL
W pracy przedstawiono nowe rozwiązania konstrukcyjne trzpieni endoprotezy stawu biodrowego charakteryzujące się obniżoną sztywnością uzyskana przez zastosowanie ażurowych konstrukcji wewnętrznych. Konstrukcje tego typu są otrzymywane przez zastosowanie generatywnych technik wytwarzania. Przeprowadzona analiza wykazała zarówno możliwość uzyskania konstrukcji ażurowych w bardzo szerokim zakresie jak również możliwość sterowania charakterystykami mechanicznymi końcowych postaci implantów. Wykazano, iż zastosowanie wewnętrznych konstrukcji ażurowych prowadzi nie tylko do zmniejszenia sztywności implantu, lecz również prowadzi do zmniejszenia efektu kształtowania się wokół implantu niekorzystnych struktur beleczek tkanki gąbczastej. Uzyskane wyniki wskazują na potencjalną możliwość uzyskania konstrukcji implantów w znacznie mniejszym stopniu narażonych na efekty "stress shieldingu" niż konstrukcje tradycyjne.
Rocznik
Strony
753--767
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wykr.
Twórcy
autor
autor
autor
autor
  • Wrocław University of Technology, The Division of Biomedical Engineering and Experimental Mechanics, Institute of Machine Design and Operation, ul. Łukasiewicza 7/9, 50-371 Wrocław, Poland
Bibliografia
  • [1] Bargar W.L.: Shape the implant to the patient: a rationale for the use of custom-fit cementless total hip implants, Clinical Orthopaedics & Related Research, Vol. 249, 1989, pp. 73-78.
  • [2] Barrack R.L., Mulroy R.D. Jr, Harris W.H.: Improved cementing techniques and femoral component loosening in young patients with hip arthroplasty. A 12-year radiographic review, Journal of Bone and Joint Surgery - British, Vol. 74-B, 1992, pp. 385-389.
  • [3] Beaupre G.S., Orr T.E., Carter D.R.: An approach for time-dependent bone remodelling and remodelling applications: a preliminary simulation, Journal of Orthop. Res., Vol. 8, 1990, pp. 662-670.
  • [4] Będziński R., Bernakiewicz M., Ścigała K.: Biomechanical aspects of artificial joint implantation in a lower limb, Journal of Theoretical and Applied Mechanics, Vol. 37, 1999, pp. 455-481.
  • [5] Będziński R., Ścigała K.: Biomechanical basis of tissue-implant interactions, Komputer methods in mechanics: CMM, Berlin - Heidelberg, Springer, 2010, pp. 379-390.
  • [6] Będziński R., Ścigała K.: Numerical and experimental methods in biomechanics, Biomechanics, Warszawa, Instytut Podstawowych Problemów Techniki PAN, 2011, pp. 77-178.
  • [7] Bougherara H., Bureau M., Campbell M., Vadean A., Yahia L.: Design of a biomimetic polymer-composite hip prosthesis, Journal of Biomedical Materials Research, Part A, Vol. 82A, 2007, pp. 27-40.
  • [8] Bugbee W.D., Culpepper W.J., Engh C.A. Jr, Engh C.A. Sr: Long-Term clinical consequences of stress-shielding after total hip arthroplasty without cement, Journal of Bone and Joint Surgery - American, Vol. 79, 1997, pp. 1007-1012.
  • [9] Carter D.R., Beaupre G.S.: Skeletal function and form, Cambridge University Press, 2001.
  • [10] Christel P., Meunier A., Leclercq S., Bouquet P., Buttazzoni B.: Development of a carbon-carbon hip prosthesis, Journal of Biomedical Materials Research, A2 Suppl, 1987, pp. 191-218.
  • [11] Cristofolini L.: A critical analysis of stress shielding evaluation of hip prostheses, Crit Rev Biomed Eng., Vol. 25, 1997, pp. 409-483.
  • [12] Crowninshield R.D., Brand R.A., Johnston R.C., Milroy J.C.: An analysis of femoral komponent stem design in total hip arthroplasty, The Journal of Bone and Joint Surgery, Vol. 62, 1980, pp. 68-78.
  • [13] Davidson J.A., Mishra A.K., Kovacs P., Poggie R.A.: New surface-hardened, low-modulus, corrosion-resistant Ti-13Nb-13Zr alloy for total hip arthroplasty, Biomed Mater Eng., Vol. 4, 1994, pp. 231-243.
  • [14] Digas G.: New polymer materials in total hip arthroplasty. Evaluation with radiostereometry, bone densitometry, radiography and clinical parameters, Acta Orthopaedica, Vol. 76, 2005, pp. 4-82.
  • [15] Engh C., Bobyn J.D., Glassman A.H.: Porous-coated hip replacement. The factors governing bone ingrowth, stress shielding, and clinical results, Journal of Bone and Joint Surgery - British, Vol. 69-B, 1987, pp. 45-55.
  • [16] Filipiak J., Kuropka P., Krawczyk A., Morasiewicz L.: Mechanical stimulation as a determine factor of bone regenerate biomechanical properties, 26th Danubia-Adria Sympodium on Advances in Experimental Mechanics, Montanuniversität Leoben, Austria, 2009, pp. 53-54.
  • [17] Filipiak J., Ścigała K.: Application of FEM in modelling of bone regenerate, Systems. Journal of Transdisciplinary Systems Sciences, Vol. 9, 2004, pp. 378-384.
  • [18] Gronostajski Z., Bandoła P., Skubiszewski T.: Argon-shielded hot pressing of titanium alloy Ti6Al4V powders, Acta Biomech Bioeng, Vol. 12, 2010, pp. 41-46.
  • [19] Gross S., Abel E.W: A finite element analysis of hollow stemmed hip prostheses as a means of reducing stress shielding of the femur, Journal of Biomechanics, Vol. 34, 2001, pp. 995-1003.
  • [20] Gruen T.A., McNeice G., Amstutz H.: "Modes of failure" of cemented stem-type femoral Components: a radiographic analysis of loosening, Clinical Orthopaedics & Related Research, Vol. 141, 1979, pp. 17-27.
  • [21] Gustilo R., Pasternak H.: Revision total hip arthroplasty with titanium ingrowth prosthesis and bone grafting for failed cemented femoral component loosening, Clinical Orthopaedics & Related Research, Vol. 235, 1988, pp. 111-119.
  • [22] Hopkinson N., Hague R., Dickens P.: Rapid manufacturing: an industrial revolution for the digital age, John Wiley & Sons, 2006.
  • [23] Huiskes R., Boeklagen R.: Mathematical shape optimization of hip prosthesis design, Journal of Biomechanics, Vol. 22, 1989, pp. 793-804.
  • [24] Huiskes R., Weinans H., van Rietbergen B.: The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials, Clinical Orthopaedics & Related Research, Vol. 274, 1992, pp. 124-134.
  • [25] Huiskes R., Mullender M.G.: Osteocytes and bone lining cells: which are the best candidates for mechano-sensors in cancellous bone?, Bone, Vol. 20, 1997, pp. 527-532.
  • [26] Krzak-Roś J., Filipiak J., Pezowicz C., Baszczuk A., Miller M., Kowalski M., Będziński R.: The effect of substrate roughness on the surface structure of tio2, sio2, and doped thin films prepared by the sol-gel method, Acta Biomech Bioeng, Vol. 11, 2009, pp. 21-29.
  • [27] Kuiper J.H., Huiskes R.: Mathematical optimization of elastic properties: application to cementless hip stem design, Journal of Biomechanical Engineering, Vol. 119, 1997, pp. 166-174.
  • [28] Lipowicz A., Dybała B., Chlebus E.: Scaffolds manufactured via conventional and advanced (LBMM) methods, in: Biocybernetyka i inżynieria biomedyczna. XV Krajowa konferencja naukowa, 12-15 September, 2007, Wrocław, Ośrodek Doskonalenia Kadr SIMP, 2007.
  • [29] Nikodem A., Będziński R., Ścigała K., Dragan Sz.: Mechanical and structural anisotropy of human cancellous femur bone, Journal of Vibroengineering, Vol. 11, 2009, pp. 571-576.
  • [30] Okazaki Y.: A New Ti-15Zr-4Nb-4Ta alloy for medical applications, Current Opinion In Solid State and Materials Science, Vol. 5, 2001, pp. 45-53.
  • [31] Pandremenos J., Paralikas J., Chryssolouris G., Dybała B., Gunnink J.W.: RM product development: design principles, simulation and tools, in: Additive layered manufacturing: from evolution to revolution, eds. Igor Drstvensek, Slavko Dolinsek. Maribor: University of Maribor, Faculty for Mechanical Engineering, 2008.
  • [32] Robertson D.D., Walker P.S., Granholm J.W., Nelson P.C., Weiss P.J., Fishman E.K., Magid D.: Design of custom hip stem prostheses using three-dimensional CT modelling, Journal of Computer Assisted Tomography, Vol. 11, 1987, pp. 804-809.
  • [33] Shirandami R., Esata I.I.: New design of hip prosthesis using carbon fibre reinforced composite, Journal of Biomedical Engineering, Vol. 12, 1990, pp. 19-22.
  • [34] Song Y., Xua D.S., Yanga R., Lia D., Wub W.T., Guoc Z.X.: Theoretical study of the effects of alloying elements on the strength and modulus of ß-type bio-titanium alloys, Materials Science and Engineering: A, Vol. 260, 1999, pp. 269-274.
  • [35] Sumner D., Turnera T.M., Igloriaa R., Urbana R.M., Galantea J.O.: Functional adaptation and ingrowth of bone vary as a function of hip implant stiffness, Journal of Biomechanics, Vol. 31, 1998, pp. 909-917.
  • [36] Tsubota K., Adachi T.: Spatial and temporal regulation of cancellous bone structure, Medical Engineering & Physics, Vol. 27, 2005, pp. 305-311.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ5-0019-0036
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.