PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Digital Material Representation as an efficient tool for strain inhomogeneities analysis at the micro scale level

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Analiza niejednorodności odkształcenia w skali mikro z wykorzystaniem Cyfrowej Reprezentacji Materiału
Języki publikacji
EN
Abstrakty
EN
The summary of recent research towards development of a tool for detailed microstructure modelling is presented within the paper. The main focus is put on micro scale behaviour, where advantages of digital material representation can be taken into account. Digital Material Representation allows modelling of microstructures along with features such as crystallographic orientation, grain boundaries or phase boundaries represented in an explicit manner. Incorporation of these digital microstructures into the numerical simulation methods provides the possibility to improve the quality of numerical results. The developed method can be used to design specifically dedicated microstructures, which meet very strict requirements. The clear motivation and importance of the work is presented in the first part of the paper followed by a short description of the developed approaches for creation of the digital microstructures. Two approaches are considered that provide an exact and statistical representation of the real microstructure. The main focus is put on the application of image processing and cellular automata techniques. Afterwards, obtained digital microstructures are used as input data for the finite element analysis of the micro scale compression test. Examples of applications during multiscale simulation are also presented in the paper.
PL
W pracy przedstawiono koncepcję tworzenia Cyfrowej Reprezentacji Materiału oraz jej zastosowanie do analizy niejednorodności odkształcenia na poziomie mikro skali. Omówiono dwie grupy metod odwzorowujących mikrostrukturę z jej cechami charakterystycznymi np. ziarna, granice ziaren. Pierwsza z nich obejmuje metody analizy obrazu rzeczywistych zgładów metalograficznych. Druga natomiast dotyczy metod tworzenia statystycznie reprezentacyjnych mikrostruktur. Otrzymane reprezentacje stanowią dane wejściowe do dalszej analizy niejednorodności odkształcenia na poziomie mikrostruktury. Przykłady zastosowań w symulacjach wieloskalowych również zostały omówione w ramach niniejszej pracy.
Rocznik
Strony
661--679
Opis fizyczny
Bibliogr. 26 poz., rys., wykr.
Twórcy
autor
autor
autor
  • Akademia Górniczo Hutnicza, Al. Mickiewicza 30, 30-059 Kraków, Faculty of Metals Engineering and Industrial Computer Science, Department of Applied Computer Science and Modelling
Bibliografia
  • [1] Beladi H., Adachi Y., Timokhina I., Hodgson P.D.: Crystallographic analysis of nanobainitic steels, Scripta Materialia, Vol. 60, 2009, pp. 455-458.
  • [2] Chenot J.-L., Chastel Y.: Mechanical, thermal and physical coupling methods in FE analysis of metal forming processes, Journal of Materials Processing Technology, Vol. 60, No. 1-4, pp. 11-18.
  • [3] De Berg M., Van Kreveld M., Overmars M., Schwarzkopf O.: Computational geometry algorithms and applications, Springer-Verlag, 2000.
  • [4] Delannay L., Doghri I., Pierard O.: Prediction of tension-compression cycles in multiphase steel using a modified incremental mean-field model, International Journal of Solid and Structures, Vol. 44, 2007, pp. 7291-7306.
  • [5] Gawad J., Paszynski M., Matuszyk P., Madej L.: Cellular automata coupled with hp-adaptive Finite Element Method applied to simulation of austenite-ferrite phase transformation with a moving interface, Steel Research International, Vol. 79, 2008, pp. 579-586.
  • [6] Gawad J., Madej L., Szeliga D., Pietrzyk M.: Cellular automaton technique as a tool for a complex analysis of the microstructure evolution and rheological behaviour, Acta Metallurgica Slovakia, Vol. 11, 2005, pp. 45-53.
  • [7] Ghadbeigi H., Pinna C., Celotto S., Yates J.R.: Local plastic strain evolution in a high strength dual-phase steel, Materials Science and Engineering A, Vol. 527, 2010, pp. 5026-5032.
  • [8] Grujicic M., Zhang Y.: Determination of effective elastic properties of functionally graded materials using Voronoi cell finite element method, Material Science Engineering A, Vol. A251, 1998, pp. 64-76.
  • [9] Jaroni U., Imlaau K.P., Osburg B.: Neue Losungsansatze für innovative Produkte und Umformtechnologien im Automobilbau, Proc. ASK25, Aachen, 2010, pp. 3-14.
  • [10] Justinger H., Hirt G.: Estimation of grain size and grain orientation influence in microforming processes by Taylor factor considerations, Journal of Material Processing Technology, Vol. 209, 2009, pp. 2111-2121.
  • [11] Kobayashi S., Oh S.I., Altan T.: Metal forming and the finite element method, Oxford University Press, New York, Oxford, 1989.
  • [12] Madej L., Mrozek A., Kus W., Burczynski T., Pietrzyk M.: Concurrent and upscaling methods in multi scale modelling - case studies, Computer Methods in Material Science, Vol. 8, 2008, pp. 1-15.
  • [13] Madej L., Hodgson P.D., Pietrzyk M.: Development of the multi-scale analysis model to simulate strain localization occurring during material processing, Archives of Computational Methods in Engineering, Vol. 16, 2009, pp. 287-318.
  • [14] Madej L.: Digital material representation of polycrystals in application to numerical simulations of inhomogenous deformation, Computer Methods in Materials Science, Vol. 10, 2010, pp. 143-155.
  • [15] Melchior M.A., Delannay L.: A texture discretization technique adapted to polycrystalline aggregates with non-uniform grain size, Computational Material Science, Vol. 37, 2006, pp. 557-564.
  • [16] Montmitonnet P., Logé R., Hamery M., Chastel Y., Doudoux J-L., Aubin J-L.: 3D elastic-plastic finite element simulation of cold pilgering of zircaloy tubes, Journal of Materiale Processing Technology, Vol. 125-126, 2002, pp. 814-820.
  • [17] Pietrzyk M.: Through-process modelling of microstructure evolution in hot forming of steels, Journal of Materials Processing Technology, Vol. 125-126, 2002, pp. 53-62.
  • [18] Pietrzyk M., Madej L., Szeliga D., Kuziak R., Pidvysotskyy V., Paul H., Wajda W.: Rheological models of metallic materials, in: Research in Polish Metallurgy at the Begin ning of XXI Century, eds. K. Swiatkowski, M. Blicharski, K. Fitzner, W. Kapturkiewicz, M. Pietrzyk, J. Kazior, Akapit, Krakow, 2006, pp. 325-346.
  • [19] Rauch L., Kusiak J.: Image filtering using dynamic particles method, Modelling dynamice in processes and systems, Vol. 180, 2009, pp. 153-163.
  • [20] Rauch L., Madej L.: Deformation of the dual phase material on the basis of digital representation of microstructure, Steel Research International, Vol. 79, 2008, pp. 247-254.
  • [21] Sabirov I., Estrin Y., Barnett M.R., Timokhina I., Hodgson P.D.: Tensile deformation of an ultrafine-grained aluminium alloy: Micro shear banding and grain boundary sliding, Acta Materialia, Vol. 56, 2008, pp. 2223-2230.
  • [22] Szeliga D., Pietrzyk M.: Testing of the inverse software for identification of rheological models of materials subjected to plastic deformation, Archives of Civil and Mechanical Engineering, Vol. 7, 2007, pp. 35-52.
  • [23] Timokhina I.B., Hodgson P.D., Ringer S.P., Zheng R.K., Pereloma E.V.: Precipitate characterisation of an advanced high-strength low-alloy (HSLA) steel using atom probe tomography, Scripta Materialia, Vol. 56, 2007, pp. 601-604.
  • [24] Trebacz L., Madej L., Wajda W., Paul H.: Simulation of plastic behaviour of FCC metals accounting for latice orientation, Proc. WCCM'08, Venice, CD, 2008, pp. 1-2.
  • [25] Von Neumann J.: Theory of Self Reproducing Automata, ed., Bamk A W, University of Illinois, Urbana, 1966.
  • [26] Wajda W., Paul H.: Modelling of microstructure and texture evolution of channel-die deformed aluminum bicrystals with {100}<001>/{110}<011> grains orientation, Computer Methods in Material Science, Vol. 9, 2009, pp. 277-282.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ5-0019-0030
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.