Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper addresses the problem of position regulation at the control feed back level of a mobile manipulator. The task is subject to state equality and/or inequality constraints. Based on the Lyapunov stability theory, a class of asymptotically stable controllers fulfilling the above constraints and generating a singularity and collision free mobile manipulator trajectory, is proposed. The problem of singularity and collision avoidance enforcement is solved here based on an exterior penalty function approach which results in continuous and bounded mobile manipulator controls even near boundaries of obstacles. The numerical simulation results carried out for a mobile manipulator consisting of a nonholonomic unicycle and a holonomic manipulator of two revolute kinematic pairs, operating both in a two-dimensional unconstrained task space and task space including the obstacles, illustrate the performance of the proposed controllers.
Rocznik
Tom
Strony
989--1003
Opis fizyczny
Bibliogr. 21 poz., wykr.
Twórcy
autor
- Faculty of the Mechanical Engineering University of Zielona Góra ul. Prof. Z. Szafrana 4, 65-516, Zielona Góra, POLAND, M.Galicki@ibem.uz.zgora.pl
Bibliografia
- An C.H., Atkenson C.G. and Hollerbach J.M. (1988): Model-based control of a robot manipulator. - Cambridge, MA, Mit Press.
- Desai J.R. and Kumar V. (1997): Nonholonomic motion planning for multiple mobile manipulators. - In Proc. IEEE Conf. Robotics Automat., pp.3409-3414.
- Galicki M. (2003): Inverse kinematics solution to mobile manipulators. - Int. J. Robotics Res., vol.22, No.12.
- Galicki M. (2010): Collision-free control of mobile manipulators in a task space. - Mechanical Systems and Signal Processing, doi:101016/j.ymssp.2010.11.003.
- Galicki M. (2011): Task space control of mobile manipulators. - Robotica, vol.29, pp.221-232.
- Galicki M. (2011): Constraint control of mobile manipulators. - Lecture Notes in Control and Information Science.
- Gilbert E.G. and Johnson D.W. (1985): Distance functions and their application to robot path planning. - IEEE J. Robotics and Automation, vol.1, pp.21-30.
- Hootsmans N.A.M. and Dubowsky S. (1991): Large motion control of mobile manipulators including vehicle suspension characteristics. - In Proc. IEEE Conf. Robotics Automat., pp.2336-2341.
- Huang Q., Tanie K. and Sugano S. (2000): Coordinated motion planning for a mobile manipulator considering stability and manipulation. - Int. J. Robotics Res., vol.19, No.8, pp.732-742.
- Khatib O. (1986): Real-time obstacle avoidance for manipulators and mobile manipulators. - Int. J. Robotics Res., vol.5, No.1, pp.90-98.
- Krstic M., Kanellakopoulos I. and Kokotovic P. (1995): Nonlinear and adaptive control design. - New York: J. Wiley and Sons.
- Lewis F.L., Abdallach C.T. and Dawson D.M. (1993): Control of robotic manipulators. - New York: Macmillan.
- Mazur A. (2005): New approach to designing input-output decoupling controllers for mobile manipulators. - Bull, of the Polish Academy of Sciences Tech. Sei., vol.53, No.1, pp.31-37.
- Mohri A., Furuno S., Iwamura M. and Yamamoto M. (2001): Sub-optimal planning of mobile manipulator. - In Proc. IEEE Conf. Robotics Automat., pp.1271-1276.
- Padois V., Fourquet J.-Y. and Chiron P. (2007): Kinematic and dynamic model-based control of wheeled mobile manipulators: a unified framework for reactive approaches. - Robotica, pp.1-17.
- Renders J.M., Rossignal E., Becquet M. and Hanus R. (1991): Kinematic calibration and geometrical parameter identification for robots. - IEEE RA, vol.7, No.6, pp.721-732.
- Tzafestas C.S. and Tzafestas S.G. (2001): Full-state modelling, motion planning and control of mobile manipulators. - Studies in Informatics and Control, vol.10, No.2.
- Yamamoto Y. and Yun X. (1994): Coordinating locomotion and manipulation of a mobile manipulator. - IEEE Trans. Automatic Control, vol.39, No.6., pp.1326-1332.
- Yamamoto Y. and Yun X. (1996): Effect of the dynamic interaction on coordinated control of mobile manipulators. - IEEE Trans. Robotics Automat., vol.12, No.5, pp.816-824.
- Yih C. and Ro I. (1997): Near-optimal motion planning for nonholonomic systems with state-input constraints via quasi-Newton method. - In Proc. IEEE Conf. Robotics Automat., pp.1430-1435.
- Yoshikawa T. (1985): Manipulability of robotic mechanisms. - Int. J. Robotics Res., vol.4, No.2, pp.3-9.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ5-0018-0005