PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

ANAFIS and neural network for modeling and prediction of ship squat in shallow waters: a new approach

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The reduction of the distance between ship floor and seabed, while the ship is moving forward, is called squat. In this research, squat is determined for vessels with Series-60 hull forms in various depths by experimental methods and then different numerical methods are employed for squat modeling. For this reason, a set of facilities for testing the ship movement in shallow waters is prepared. A series of models of the vessel is manufactured and many tests are carried out. The aim of the present study is to demonstrate the usefulness of an adaptive-network-based fuzzy inference system (ANFIS) for modeling and predicting the squat parameter for ships in shallow waters. It is also shown how dimensionless squat (S*) varies with the variation of important parameters, namely: block coefficient (CB), dimensionless distance between the seabed and ship floor […] and hydraulic Froude Number (Fnh). The results obtained through the ANFIS are also compared with those of a multiple linear regression and GMDH-type neural network with multi-layered feed forward back propagation algorithm. The results show that the ANFIS-based squat has higher predictability function than other numerical methods.
Rocznik
Strony
211--231
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wykr.
Twórcy
autor
autor
autor
Bibliografia
  • Barrass C.B (1997): Pilotage and squat. - Comment in seaways.
  • Barrass C.B. (1978): Ship Squat. - Lorne and Maclean Publishers.
  • Barrass C.B (1979): The phenomena of ship squat. -International Shipbuilding Progress, vol.26, pp.44-47.
  • Barrass C.B (1998): Ship squat. - Letters in Seaways.
  • Chi Yang, Lohner R., Noblesse F. and Huang T.T. (2000): Calculation of Ship Sinkage and Trim Using Unstructured Grids. - Proc. ECCOMAS 2000, Barcelona, September (2000).
  • Constantine T. (1961): On the movement of ships in restricted waterways. - Journal of Fluid Mechanics, vol.9, pp.247-256.
  • Daoming, Gao, Jie and Chen (2006): ANFIS for high-pressure waterjetcleaning prediction. - Surface and coating technology, vol.201, pp.1629-1634.
  • Darvizeh A., Nariman-Zadeh N. and Gharababei H. (2001): GMDH-Type Neural Network Modelling of Explosive Cutting Process of Plates Using Singular Value Decomposition. - Prague: ESM'2001, June.
  • Dolenko S.A., Orlov Y.V. and Persiantsev I.G. (1996): Practical Implementation and Use of Group Method of Data Handling (GMDH): Prospects and Problems. - Proc. ACEDC'96, University of Plymouth, UK.
  • Draper N.R. and Smith H. (1981): Applied Regression Analysis. - New York: Wiley.
  • Farlow S.J. (1984): Self-organizing Method in Modelling: GMDH type algorithm. - Marcel Dekker Inc.
  • Gourlay T.P. (2000): Mathematical and computational techniques for predicting the squat of ships. - Ph.D. Thesis, University of Adelaide.
  • Havelock T.H. (1939): Note on the sinkage of a ship at low speeds. - Zeitschrift fur Angewandte Mathematical Mechanics, vol.9, pp.202-205.
  • Iba H., deGaris H. and Sato T. (1996): A numerical approach to genetic programming for system identification. - Evolutionary Computation, vol.3, No.4, pp.417-452.
  • Ivakhnenko A.G. (1971): Polynomial theory of complex systems. - IEEE Trans. Syst. Man & Cybern, SMC-1, pp.364-378.
  • Jang J. (1993): ANFIS: Adaptive network-based fuzzy inference systems. - IEEE Trans. Systems Man Cybernet. Vol.23, pp.665-685.
  • Jang J. (1993): ANFIS: Adaptive-network-based fuzzy inference system. - IEEE Trans. Syst. Man Cybern., vol.23, No.3, pp.665-685.
  • Kalogirou S.A. (2000): Applications of artificial neural-networks for energy systems. - Appl. Energy, vol.67, pp.17-35.
  • Kaya M.D., Hasiloglu A.S., Bayramoglu M., Yesilyurt H. and Ozok F. (2003): A new approach to estimate anthropometric measurements by adaptive neuro-fuzzy inference system. - Internat. J. Indust. Ergonom., vol.32, pp.105-114.
  • Kriebel D., Seelig W. and Judge C.: Development of a unified description of ship generated waves (and some other recent work).
  • Kreitner J. (1934): The Resistance of Ships in Confined Waters. - Werft-Rederei-Hafen.
  • Mueller J.A. and Lemke F. (2000): Self-Organising Data Mining: An Intelligent Approach to Extract Knowledge from Data. - Hamburg: Pub. Libri.
  • Naghdi P.M. and Rubin M.B. (1984): Squat of a ship. - Journal of Ship Research, vol.28, No.2, pp.107-117.
  • Nariman-Zadeh N., Darvizeh A. and Ahmad-Zadeh R. (2002): Evolutionary Design of GMDH-Type Neural Networks Using Singular Value Decomposition for the Modelling of Process Parameters of Explosive Cutting Process. - Lviv: First International Conference On Inductive Modelling, ICIM'2002, , Ukraine, pp.20-25.
  • Nariman-Zadeh N., Darvizeh A., Jamali A. and Moeini, A. (2005): Evolutionary design of generalized polynomial neural networks for modelling and prediction of explosive forming process. - Journal of Materials Processing Technology pp.164-165, pp.1561-1571.
  • Newbold P. (1988): Statistics for Business and Economics. - New York: Prentice-Hall, Englewood Cliffs.
  • Norusis M.J. (1990): SPSS Base System User's Guide. - Chicago: SPSS Inc.
  • Olivieri A., Pistani F., Avanzini A., SternF. and Penna R. (2001): Towing Tank Experiments of Resistance? Sinkage and Trim? Wake? and Free Surface Flow around a Naval Combatant. - SEAN 2340 Model. IIHR Technical Report, No.421.
  • Porto V.W. (1997): Evolutionary computation approaches to solving problems in neural computation, in "Handbook of Evolutionary Computation". - Back T., Fogel D. B. and Michalewicz Z. (eds). Institute of Physics Publishing and New York: Oxford University Press, pp D1.2:1-D1.2:6.
  • Takagi T. and Sugeno M. (1983): Proceeding of IFAC Symposium Fuzzy Information. - Knowledge Representation and Decision Analysis, Marseilles, France. pp.55.
  • Takagi T. and Sugeno M. (1985): Fuzzy identification of systems and its applications to modeling and control. - IEEE Trans. Syst. Man Cybern., vol.15, pp.116-132.
  • Tuck E.O. and Tylor P.J. (1970) Shallow-water problems in ship hydrodynamics. - Proceedings of 8th Symposium on Naval Hydrodynamics, Pasadena, pp.627-659.
  • Xu K., Luxmoore A.R., Jones L.M. and Deravi F. (1998): Integration of neural networks and expert systems for microscopic wear particle analysis. - Knowledge-Based Systems, vol. 11, pp.213-227.
  • Yao X. (1999): Evolving Artificial Neural Networks. - Proceedings of IEEE, vol.87, No.9, pp.1423-1447.
  • Zadeh L.A. (1965): Fuzzy sets. - Information Control, vol.8, pp.338-353.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ5-0015-0035
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.