PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Transient analysis of alloy freezing in finite media with energy generation and convective cooling

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effects of volumetric energy generation on phase change problems are important for many engineering applications including casting of nuclear waste materials, vivo freezing of biological tissues solar collectors etc. In the present study, a 1-D transient heat transfer analysis is carried out to study the effect of volumetric heat generation on alloy solidification in finite media with convective cooling. Enthalpy method is used to solve the mathematical model. The temperature profile and the motion of freezing interface are calculated for different values of volumetric heat generation and convective cooling. It is found that the motion of freezing interface slows down with an increase in the heat generation rate and for large values of heat generation it is not possible to solidify the whole region. The freezing accelerates with respect to an increasing rate of convective cooling. Further, for large values of heat generation the whole region can solidify by increasing convective cooling.
Rocznik
Strony
1155--1168
Opis fizyczny
Bibliogr. 28 poz., tab., wykr.
Twórcy
autor
  • Applied Mathematics and Humanities Department S.V. National Institute of Technology Surat- 395007 INDIA, sushilk@ashd.svnit.ac.in
Bibliografia
  • Alexiades V. and Solomon A.D. (1993): Mathematical Modeling of Melting and Freezing Process. - Washington DC: Hemisphere Publication.
  • Andrushkiw R.I. (1990): Mathematical modeling of freezing front propagation in biological tissue. - Math. Comput. Modeling, vol.13, pp.1-9.
  • Basak T. (2003): Analysis of resonances during microwave thawing of slab. - Int. J. Heat Mass Transfer, vol.46, pp.4279-4301.
  • Bonacina C. and Comini G. (1973): Numerical solution of phase change problems. - Int. J. Heat Mass Transfer, vol.16, pp.1825-1832.
  • Carslaw H.S. and Jaeger J.C. (1959): Conduction of Heat in Solids. - Edition-2, London: Oxford University Press.
  • Chan S.H., Cho D.H. and Kocamustafaogullari G. (1983): Melting and solidification with internal radiative transfer-A generalized phase change model. - Int. J. Heat Mass Transfer, vol.26, pp.621-633.
  • Chung F.B., Chawla T.C. and Pedersen D.R. (1984): The effect of heat generation and wall interaction on freezing and melting in finite slab. - Int. J. Heat Mass Transfer, vol.27, pp.29-37.
  • Comini G. and Giudice D.S. (1976): Thermal aspect of cryosurgery. - ASME Journal of Heat Transfer, vol.98, pp.543-549.
  • Devireddy R.V., Smith D.J. and Bischof J.C. (2002): Effect of microscale mass transport and phase change on numerical prediction of freezing in biological tissue. - ASME Journal of Heat Transfer, vol.124, pp.365-374.
  • El-Genk M. and Cronenberg W. (1982): An assessment of fuel freezing and drainage phenomena in a reactor shield plug following a disruptive accident. - Nuclear Engineering and Design, vol.75, pp.73-80.
  • Ferriera I.L., Spinelli J.E., Pires J.C. and Garcia A. (2005): The effect of melt temperature profile on the transient metal/mold heat transfer coefficient during solidification. - Materials Science and Engineering: A, vol.408, pp.317-325.
  • Hoffmann N.E. and Bischof J.C. (2001): Cryosurgery of normal and tumor tissue in the dorsal skin flap chamber: Part I- Thermal response. - ASME J. Biomech. Eng., vol.123, pp.301-309.
  • Jiji L.M. and Gaye S. (2006): Analysis of solidification and melting of PCM with energy generation. - Applied Thermal Engineering, vol.6, pp.68-575.
  • Katiyar V.K. and Mohanty B. (1989): Transient heat transfer analysis for moving boundary transport problem in finite media. - Int. J. Heat Fluid Flow, vol.10, pp.28-31.
  • Kikuchi Y. and Shigemasa Y. (1982): Liquid solidification in laminar tube flow with internal heat sources. - Nuclear Engineering and Design, vol.75, pp.73-80.
  • Kumar S. and Katiyar V.K. (2007): Numerical study on phase change heat transfer during combined hyperthermia and cryosurgical treatment of lung cancer. - Int. J. of Appl. Math And Mech, vol.3, No.3, pp.1-17.
  • Li J.F., Li L. and Stott F.H. (2004): Comparision of volumetric and surface heating sources in the modeling of laser melting of ceramic materials. - Int. J. Heat Mass Transfer, vol.47, pp.1159-1174.
  • Rabin Y. and Shitzer A. (1980): Numerical solution of the multidimensional freezing problem during cryosurgery. - ASME J. Biomech. Eng., vol.120, pp.32-37.
  • Rai K.N. and Rai S.K. (1999): Effect of heat generation and blood perfusion on the heat transfer in tissue with a blood vessel. - J. Heat Mass Transfer, vol.35, pp.75-79.
  • Rai K.N. and Rai S.K. (1999): Heat transfer inside the tissue with a supplying vessel for the case when metabolic heat generation and blood perfusion are temperature dependent. - Heat and Mass Transfer, vol.35, pp.345-350.
  • Rattanadecho P. (2004): Theoretical and experimental investigation of microwave thawing of frozen layer using a microwave oven (Effects of layered configurations and thickness). - Int. J. Heat Mass Transfer, vol.47, pp.937-945.
  • Rewcastle J.C., Sandison G.A., Muldrew K., Saiken J.C. and Donnelly B.J. (2001): A model for the time dependent three dimensional thermal distribution within iceballs surrounding multiple cryoprobes. - Medical Physics, vol.26, pp.1125-1137.
  • Shamsunder N. and Sparrow E.M. (1975): Analysis of multidimensional conduction phase change problem via the enthalpy model. - ASME Journal of Heat Transfer, vol.97, pp.333-340.
  • Siahpush A. and Crepeau J. (2004): Integral solution of phase change with integral heat generation. - In: Proc. of 12th Int. Conf. on Nucl. Eng., April 25-29, Arlington V A.
  • Voller V.R. (1987): An implicit enthalpy solution for phase change problem: with application to binary alloy solidification. - App. Math. Modeling, vol.11, pp.110-116.
  • Voller V.R. and Shadabi L. (1984): Enthalpy method for tracking phase change boundary in two dimensions. - Int. comm. Heat and Mass Transfer, vol.11, pp.239-249.
  • Voller V.R. and Swaminathan C.R. (1991): Generalized source-based method for solidification phase change. - Numerical Heat Transfer: Part B, vol.19, pp.175-189.
  • Zhao G., Zhang H.F., Guo X.J., Luo D.W. and Gao D.Y. (2007): Effect of blood flow and metabolism on multidimensional heat transfer during cryosurgery. - Medical Engineering and Physic, vol.29, pp.205-215.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ5-0015-0013
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.