Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Analityczne rozwiązanie wymuszonego konwekcyjnie przepływu w warstwie przyściennej płaskiej płyty
Języki publikacji
Abstrakty
In this letter, the problem of forced convection heat transfer over a horizontal flat plate is investigated by employing the Adomian Decomposition Method (ADM). The series solution of the nonlinear differential equations governing on the problem is developed. Comparison between results obtained and those of numerical solution shows excellent agreement, illustrating the effectiveness of the method. The solution obtained by ADM gives an explicit expression of temperature distribution and velocity distribution over a flat plate.
W artykule przedstawiono zastosowanie metody dekompozycji Adomiana do wymuszonego, konwekcyjnie przepływu ciepła w poziomej, płaskiej płycie. Rozwiązania nieliniowych równań różniczkowych opisujących zagadnienie poszukiwana w postaci szeregów Adomiana. Z porównania otrzymanych wyników z wynikami innych metod numerycznych wynika doskonała ich zgodność, która potwierdza skuteczność zastosowanej metody. Otrzymane rozwiązanie pozwoliło jednoznacznie wyznaczyć rozkład i prędkości mian temperatury w analizowanej płycie.
Czasopismo
Rocznik
Tom
Strony
43--51
Opis fizyczny
Bibliogr. 19 poz., tab., wykr.
Twórcy
autor
autor
autor
autor
- School of Mechanic, Islamic Azad University, Jouybar Branch, Jouybar, Iran
Bibliografia
- [1] Ganji D.D., Rajabi A., Taherian H.: Application of homotopy perturbation method in nonlinear heat conduction and convection equations, Physics Letters A, Vol. 360, No. 4–5, 2007, pp. 570–573.
- [2] Fouladi F., Hosseinzadeh E., Barari A., Domairry G.: Highly nonlinear temperaturedependent fin analysis by variational iteration method, Heat Transfer Research, Vol. 41, No. 2, 2010, pp. 155–165.
- [3] Miansari M. O., Miansari M. E., Barari A., Domairry G.: Analysis of Blasius equation for flat-plate flow with infinite boundary value, International Journal for Computational Methods in Engineering Science and Mechanics, Vol. 11, No. 2, 2010, pp. 79–84.
- [4] Ganji D.D., Mirgolbabaei H., Miansari Me., Miansari Mo.: Application of homotopy perturbation method to solve linear and non-linear systems of ordinary differential equations and differential equation of order three, Journal of Applied Sciences, Vol. 8, No. 7, 2008, pp. 1256–1261.
- [5] Mirgolbabaei H., Ganji D.D.: Application of homotopy perturbation method to the combined KdV–MKdV equation, Journal of Applied Sciences, Vol. 9, No. 19, 2009, pp. 3587–3592.
- [6] Mirgolbabaei H., Ganji D.D., Taherian H.: Soliton solution of the Kadomtse-Petviashvili equation by homotopy perturbation method, World Journal of Modelling and Simulation, Vol. 5, No. 1, 2009, pp. 38–44.
- [7] Adomian G.: Solving frontier problems of physics, the decomposition method, Kluwer Academic, Dordrecht, 1994.
- [8] Hashim I., Noorani M.S.M., Batiha B.: A note on the Adomian decomposition method for the generalized Huxley equation, Applied Mathematics and Computation, Vol. 181, No. 2, 2006, pp. 1439–1445.
- [9] Hashim I.: Adomian decomposition method for solving BVPs for fourth-order integrodifferential equations, Journal of Computational and Applied Mathematics, Vol. 193, No. 2, 2006, pp. 658–664.
- [10] Hashim I., Noorani M.S.M., Ahmad R., Bakar S.A., Ismail E.S., Zakaria A.M.: Accuracy of the Adomian decomposition method applied to the Lorenz system, Chaos Solitons Fractals, Vol. 28, No. 5, 2006, pp. 1149–1158.
- [11] Hashim I., Noorani M.S.M., Said Al-Hadidi M.R.: Solving the generalized Burgers–Huxley equation using the Adomian decomposition method, Mathematical and Computer Modelling, Vol. 43, No. 11–12, 2006, pp. 1404–1411.
- [12] Noorani M.S.M., Hashim I., Ahmad R., Bakar S.A., Ismail E.S., Zakaria A.M.: Comparing numerical methods for the solutions of the Chen system, Chaos Solitons Fractals, Vol. 32, No. 4, 2007, pp. 1296–1304.
- [13] Sun Y.P., Liu S.B., Keith S.: Approximate solution for the nonlinear model of diffusion and reaction in porous catalysts by the decomposition method, Chemical Engineering Journal, Vol. 102, No. 1, 2004, pp. 1–10.
- [14] Wazwaz A.M.: The modified decomposition method and Padé approximants for a boundary layer equation in unbounded domain, Applied Mathematics and Computation, Vol. 177, No. 2, 2006, pp. 737–744.
- [15] Awang Kechil S., Hashim I.: Approximate analytical solution for MHD stagnation-point flow in porous media, Communications in Nonlinear Science and Numerical Simulation, Vol. 14, No. 2, 2009, pp. 1346–1354.
- [16] Awang Kechil W.S., Hashim I.: Non-perturbative solution of free-convective boundarylayer equation by Adomian decomposition method, Physics Letters A, Vol. 363, No. 1–2, 2007, pp. 110–114.
- [17] Hayat T., Hussain Q., Javed T.: The modified decomposition method and Padé approximants for the MHD flow over a non-linear stretching sheet, Nonlinear Analysis: Real World Applications, Vol. 10, No. 2, 2009, pp. 966–973.
- [18] Incropera F.P., Dewitt D.P.: Introduction to heat transfer, 3rd edition, John Wiley & Sons, Inc., 1996.
- [19] Baker G.A.: Essentials of padé approximants, Academic Press, New York, 1975.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ5-0006-0024