PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mining method selection and optimization of transition from open pit to underground in combined mining

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Wybór metody wybierania oraz optymalizacja przejścia od kopalni odkrywkowych do podziemnych w podejściu mieszanym
Języki publikacji
EN
Abstrakty
EN
There are occasionally deposits with a potential of exploiting by a combined mining of open pit and underground. Hence, the most significant query emerges: where is the optimal transition depth from open pit to underground? In this study, in order to profitably select a single or combined mining of open pit and underground, as well as to determine optimal transition depth a methodology is presented. The model is established upon the economical block models of open pit and underground methods together with the Net Present Value (NPV)s gained by their mining. Main process in the model is economical comparison among several options of single and combined mining. To evaluate the model in detail, a hypothetical case is used. In this regard, among the all options a combined was selected that implying a height of 62,5 m as the optimal transition depth and the amount of 25.54 units of currency as the maximum total NPV achieved by the option.
PL
Zdarzają się złoża, które potencjalnie wybierać można łącząc metody stosowane w górnictwie odkrywkowym i podziemnym. W tym momencie pojawia się zasadnicze pytanie: jaka jest optymalna głębokość przejścia od metod górnictwa odkrywkowego do podziemnego? W artykule przedstawiona jest metodologia określania optymalnej głębokości przejścia w celu skutecznego znalezienia optymalnej metody wybierania lub ich kombinacji. Model zbudowany jest w oparciu o ekonomiczne modele blokowe metod wybierania odkrywkowego i podziemnego, z podaniem wartości bieżącej netto (Net Present Value) dla każdej z metod. Głównym założeniem modelu jest porównanie poszczególnych opcji wybierania, metod pojedynczych i łączonych w ich aspekcie ekonomicznym. W celu dokładniejszej oceny modelu przedstawiony jest przypadek hipotetyczny, dla którego ustalono optymalną metodę wybierania jako metodę połączoną, z optymalną głębokością przejścia 62,5 m, co daje maksymalną wartość NPV dla tej opcji jako 25.64 jednostki walutowe.
Rocznik
Strony
481--493
Opis fizyczny
Bibliogr. 31 poz., tab., wykr.
Twórcy
autor
autor
autor
  • Department of Mining and Metallurgy Engineering, Amirkabir University of Technology, Tehran, Iran
Bibliografia
  • Abdollahisharif J., Bakhtavar E., Shahriar K., 2008. Open-pit to underground mining- where is the optimum transition depth?, Proceedings of 21st WMC & Expo 2008, Sobczyk & Kicki (eds), Taylor & Francis Group, London, UK, pp. 189-196.
  • Alford C., 1995. Optimization in underground mine design, Proceedings of 25th International APCOM Symposium.
  • Arancibia E., Flores G., 2004. Design for underground mining at Chuquicamata Ore body-Scoping Engineering Stage, Proceedings of MassMin Conference, Santiago, Chile, 603-609.
  • Bakhtavar E., Shahriar K., 2007. Optimal ultimate pit depth considering an underground alternative, Proceedings of Fourth AACHEN International Mining Symposia- High Performance Mine Production, Aachen, Germany, 213-221.
  • Bakhtavar E., Shahriar K., Oraee K., 2008a. An approach towards ascertaining open-pit to underground transition depth, Journal of Applied Sciences, 8 (23), pp. 4445-4449.
  • Bakhtavar E., Shahriar K., Oraee K., 2008b. A Model for Determining Optimal Transition Depth over from Open-pit to Underground Mining, Proceedings of 5th International Conference on Mass Mining, Lulea, Sweden, pp. 393-400.
  • Brannon C., Casten T., Johnson M., 2004. Design of the Grasberg block cave mine, Proceedings of Massmin Conference, Santiago, Chile, 623-628.
  • Brummer R.K., Li H., Moss A., Casten T., 2006. The Transition from Open Pit To Underground Mining: An Unusual Slope Failure Mechanism at Palabora, Proceedings of International Symposium on Stability of Rock Slopes in Open Pit Mining and Civil Engineering, The South African Institute of Mining and Metallurgy, 411-420.
  • Bull G., MacSporran G., Baird C., 2004. The alternate design considered for the Argyle underground mine, Proceedings of Massmin Conference, Santiago, Chile, 616-622.
  • Camus J.P., 1992. Open pit optimization considering an underground alternative, Proceedings of 23th International APCOM Symposium, 435-441.
  • Changyu X., 1984. A study of stope parameters during changing from open pit to underground at the Meng-Yin diamond mine in China, Journal of Mining Science and Technology, Nom 1, 179-188.
  • Chen J., Guo D., Li J., 2003. Optimization principle of combined surface and underground mining and its applications, Journal of Central South University of Technology, Volume 10, Number 3 / September, 222-225.
  • Chen J., Li J., Luo Z., Guo D., 2001. Development and application of optimum open-pit software for the combined miting of surface and underground, Proceedings of CAMI Symposium, 303-306.
  • Flores G., 2004. Geotechnical challenges of the transition from open pit to underground mining at Chuquicamata Mine, Proceedings of MassMin Conference, Santiago, Chile, 591-602.
  • Fuentes S.S., 2004. Going to an underground (UG) mining method, Proceedings of MassMin Conference, Santiago, Chile, 633-636.
  • Fuentes S.S., Caceres S., 2004. Block/panel caving pressing final open pit limit, CIM Bulletin, September, No 97, 32-34.
  • Hersant D., 2004. Mine design of the Argyle underground project, Proceedings of Massmin Conference, Santiago, Chile, 610-615.
  • Jakubec J., Long L., Nowicki T., Dyck D., 2004. Underground geotechnical and geological investigations at Ekati Mine-Koala North: case study, Journal of LITHOS, Nom 76, 347-357.
  • Kandiah A., 2007. Information about a Western Australian Gold Mine- Kanowana Belle, http://www.quazen.com/Reference/Education/Kanowna-Belle-Gold-Mine.20342.
  • Korobov S., 1974. Methods for Determining Optimal Open Pit Limits, Paper ED-74-R-4.
  • Kuchta M., Newman A., Topal E., 2003. Production scheduling at LKAB’s Kiruna Mine using mixed integer programming, Mining Engineering, April, 35-40.
  • Lerchs H., Grossmann I.F., 1965. Optimum Design of Open Pit Mines, Canadian Institute of Mining Bulletin, 58, 17-24.
  • Nilsson D.S., 1982. Open Pit or Underground mining, Underground Mining methods Handbook (Section.1.5), AIME, New York, 70-87.
  • Nilsson D.S., 1992. Surface Vs. Underground Methods, SME Mining Engineering Handbook (Section 23.2), edited by Hartman, H.L., 2058-2068.
  • Nilsson D.S., 1997. Optimal Final Pit Depth: Once Again, (Technical Paper), International Journal of Mining Engineering, 71-72.
  • Popov G., 1971. The Working of Mineral Deposits (Translated from the Russian by Shiffer, V.), Mir Publishers Moscow, 458-461.
  • Rio Tinto’s Diamonds Group, 2006. Sustainable development report of Diavik Diamond Mine, www.Diavik.ca/PDF, 16.
  • Soderberg A., Rausch D.O., 1968. Surface Mining (Section 4.1), Edited by Pfleider, AIMM, E. P., New York, 142-143.
  • Srikant A., Brannon C., Flint D.C., Casten T., 2007. Geotechnical characterization and design for the transition from the Grasberg open pit to the Grasberg block cave mine, Proceedings of Rock Mechanics Conference, Taylor&Francis Group, London, 1277-1286.
  • Tulp T., 1998. Open pit to Underground Mining, Mine Planning and Equipment Selection, Balkema, Rotterdam, 9-12.
  • Visser W.F., Ding B., 2007. Optimization of the Transition from Open Pit to Underground Mining, Proceedings of Fourth AACHEN International Mining Symposia- High Performance Mine Production, Aachen, Germany, 131-148.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ5-0005-0018
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.