PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of loading type on the shape of fatigue lifetime curve

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper is devoted to an experimental examination of the influence of loading type on the shape of fatigue lifetime curve of the high-carbon-chromium bearing steel (100Cr6). The push-pull and rotating bending loading tests (R=-1) were used with the aim to obtain experimental data in the region from [...] cycles to [...] cycles. The shape of fatigue lifetime curve of 100Cr6 bearing steel depends on the loading type. The S-N curve obtained using rotating bending consists of two parts corresponding to surface and subsurface fatigue crack initiation, resulting in a stepwise S-N curve. In this case, the typical stepwise S-N relationship clearly indicates that the mechanism of fatigue crack initiation transfers from the surface to subsurface with decreasing the applied stress level. On the other hand, the S-N curves obtained at push-pull loading revealed a continuous downward slope without any indication for a plateau region and subsurface fatigue crack initiation occurs in the whole range of amplitudes. This fact has to be taken in consideration while selecting a structural material.
Rocznik
Strony
321--328
Opis fizyczny
Bibliogr. 28 poz., rys., wykr.
Twórcy
autor
autor
autor
autor
Bibliografia
  • Bathias C. (1999): There is no infinite fatigue life in metallic materials. – Fatigue Fract. Eng. Mater. Struct., vol.22, pp.559-565.
  • Bidulský R., Actis Grande M., Kabátová M. and Bidulská J. (2009): The effect of varying carbon content and shot peening upon fatigue performance of prealloyed sintered steels. – Journal of Materials Science and Technology, vol.25, No.5, pp.607-610.
  • Bokůvka O., Nicoletto G., Kunz L., Palček P. and Chalupová M. (2002): Low and High Frequency Fatigue Testing. – Žilina: 1st. Edition, EDIS ŽU Žilina.
  • Činčala M. (2005): High cycle fatigue of 100Cr6 bearing steel. – Ph. D. Thesis, University of Žilina, Žilina, Slovak Republic.
  • Dominguez A.G.M. (2008): Prediction of very high cycle fatigue failure for high strength steels, based on the inclusion geometrical properties. – Mechanics of Materials, vol.40, No.8, pp.636-640.
  • Itoga H., Ko H.N., Tokaji K. and Nakajima M. (2004): Effect of inclusion size on step-wise S–N characteristics in high strength steels. – In: Proceedings of 3rd VHCF International Conference; Sakai, T., Ochi, Y. (Eds.), University of Electro-Communications Publication, Tokyo, Japan, pp.633-640.
  • Klesnil M. and Lukáš P. (1975): Únava kovových materialů při mechanickém namáhání. – Praha: 1st. Edition, ACADEMIA.
  • Li W., Sakai T., Li Q., Lu L.T. and Wang P. (2010): Reliability evaluation on very high cycle fatigue property of GCr15 bearing steel. – International Journal of Fatigue, vol.32, pp.1096-1107.
  • Lu L.T., Zhang J.W. and Shiozawa K. (2009): Influence of inclusion size on S-N curve characteristics of high-strength steels in the giga-cycle fatigue regime. – Fatigue Fract. Engng. Mater. Struct., vol.32, pp.647-655.
  • Marines I.G., Dominguez G.A., Baudry G., Vittori J.F., Rathery S., Doucet J.P. and Bathias C. (2003): Ultrasonic fatigue tests on bearing steel AISI-SAE 52 100 at frequency of 20 kHz and 30 kHz. – International Journal of Fatigue, vol.25, pp.1037-1046.
  • Mayer H., Haydn W., Schuller R., Issler S., Furtner B. and Bacher-Höchst M. (2009): Very high cycle fatigue properties of bainitic high carbon-chromium steel. –  International Journal of fatigue, vol.31, pp.242-249.
  • Medvecký Š., Čilík L., Žarnay M., Hrčeková A., Bronček J. and Kučera L. (2006): Konštruovanie 1. – Žilina: 1st. Edition, EDIS ŽU Žilina.
  • Mughrabi H. (2004): Specific features and mechanisms of fatigue in the ultrahigh cycle regime. – In: Proceedings of 3rd VHCF International Conference; Sakai, T., Ochi, Y. (Eds.), University of Electro-Communications Publication, Tokyo, Japan, pp.14-23.
  • Murakami Y. (2002): Metal fatigue: effects of small defects and nonmetallic inclusions. – Oxford: 1st. Edition, Elsevier Ltd.
  • Murakami Y., Yokoyama N.N. and Nagata J. (2002): Mechanism of fatigue failure in ultra long life regime. – Fatigue Fract. Eng. Mater. Struct., vol.25, pp.735-746.
  • Murakami Y., Nomoto T. and Ueda T. (1999): Factors influencing the mechanism of superlong fatigue failure in steels. – Fatigue Fract. Eng. Mater. Struct., vol.22, pp.581-590.
  • Murakami Y., Nomoto T., Ueda T. and Murakami Y. (2000): On the mechanism of fatigue failure in the superlong life regime (N > 107 cycles). Part 1: Influence of hydrogen trapped by inclusions. – Fatigue Fract. Engng. Mater. Struct., vol.23, pp.893-902.
  • Murakami Y., Nomoto T., Ueda T. and Murakami Y. (2000): On the mechanism of fatigue failure in the superlong life regime (N > 107 cycles). Part 2: A fractographic investigation. – Fatigue Fract. Engng. Mater. Struct., vol.23, pp.903-910.
  • Nagata J. and Murakami Y. (2003): Factors influencing the formation of ODA in ultralong fatigue regime. – Journal Soc. Mater. Sci., vol.52, pp.966-973.
  • Nakajima M., Kamiya N., Itoga H., Tokaji K. and Ko H.N. (2006): Experimental estimation of crack initiation lives and fatigue limit in subsurface fracture of a high carbon chromium steel. – International Journal of Fatigue, vol.28, pp.1540-1546.
  • Nakajima M., Tokaji K., Itoga H. and Shimizu T. (2010): Effect of loading condition on very high cycle fatigue behavior in a high strength steel. – International Journal of Fatigue, vol.32, pp. 475-480.
  • Nishijama K. and Kanazawa K. (1999): Stepwise S-N curve and fish-eye failure in giga cycle fatigue. – Fatigue Fract. Engn. Mater. Struct., vol.22, pp.601-607.
  • Nový F., Činčala M., Kopas P. and Bokůvka O. (2007): Mechanisms of high-strength structural materials fatigue failure in ultra-wide life region. – Materials Science and Engineering, vol.A 462, pp.189-192.
  • Ochi Y., Matsumura T., Masaki K. and Yoshida S. (2002): High-cycle rotating bending fatigue property in very long-life regime of high-strength steels. – Fatigue Fract. Eng. Mater. Struct., vol.25, pp.823-830.
  • Palček P., Chalupová M., Nicoletto G. and Bokůvka O. (2003): Prediction of Machine Element Durability. – Žilina: 1st. Edition, EDIS ŽU Žilina.
  • Papakyriacou M., Mayer H., Pypen C., Plenk H. Jr. and Stanzl-Tschegg S. (2001): Influence of loading frequency on high cycle fatique properties of b.c.c and h.c.p. metals. – Materials Science and Engineering , vol.A308, pp.143-152.
  • Shiozawa K., Lu L.T. and Ishihara S. (2001): S–N curve characteristics and subsurface crack initiation behaviour in ultra-long life fatigue of a high carbon-chromium bearing steel. – Fatigue Fract. Eng. Mater. Struct., vol.24, pp.781-790.
  • Shiozawa K. and Lu L.T. (2002): Very high-cycle fatigue behavior of shot-peened highcarbon–chromium bearing steel. – Fatigue Fract. Eng. Mater. Struct., vol.25, pp.813-822.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ5-0004-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.